Time Limit: 5000MS      Memory Limit: 65536K

Total Submissions: 32364 Accepted: 15685

Description

There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

Input

The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

Output

For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

Sample Input

10 9

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

1 10

10 4

2 3

4 5

4 8

5 8

0 0

Sample Output

Case 1: 1

Case 2: 7

Hint

Huge input, scanf is recommended.

Source

Alberta Collegiate Programming Contest 2003.10.18

【题解】



最基础的并查集了。

合并之后看看总的“大集合”有多少个即可。

特殊的。只有自己本身的也算成一个宗教。

这样可以满足宗教总数最多。

即同一个宗教的归为一类宗教。其他不同的人的宗教全都不一样。

#include <cstdio>
#include <iostream> using namespace std; const int MAXN = 59000; int n, m;
int f[MAXN]; void input(int &r)
{
char t;
t = getchar();
while (!isdigit(t)) t = getchar();
int x = 0;
while (isdigit(t))
{
x = x * 10 + t - '0';
t = getchar();
}
r = x;
} int findfather(int x)
{
if (f[x] == x)
return x;
f[x] = findfather(f[x]);
return f[x];
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
int ii = 0;
input(n); input(m);
while ((n + m) != 0)
{
ii++;
for (int i = 1; i <= n; i++)
f[i] = i;
int num = n;
for (int i = 1; i <= m; i++)
{
int x, y;
input(x); input(y);
int a = findfather(x), b = findfather(y);
if (a != b)
{
f[a] = b;
num--;
}
}
printf("Case %d: %d\n",ii, num);
input(n); input(m);
}
return 0;
}

【48.47%】【POJ 2524】Ubiquitous Religions的更多相关文章

  1. POJ 2524 :Ubiquitous Religions

    id=2524">Ubiquitous Religions Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 231 ...

  2. 【原创】poj ----- 2524 Ubiquitous Religions 解题报告

    题目地址: http://poj.org/problem?id=2524 题目内容: Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 6 ...

  3. [bzoj2288]【POJ Challenge】生日礼物_贪心_堆

    [POJ Challenge]生日礼物 题目大意:给定一个长度为$n$的序列,允许选择不超过$m$个连续的部分,求元素之和的最大值. 数据范围:$1\le n, m\le 10^5$. 题解: 显然的 ...

  4. 【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)

    题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离.问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则 ...

  5. 【poj 1988】Cube Stacking(图论--带权并查集)

    题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...

  6. 整理C++面试题for非CS程序猿——更新至【48】

    结合网上的C++面试题+自己的面经,进行整理记录,for我这种非CS的程序猿.(不定期更新,加入了自己的理解,如有不对,请指出) [1] new/delete和malloc/free的区别和联系? 1 ...

  7. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  8. 【POJ】【2348】Euclid‘s Game

    博弈论 题解:http://blog.sina.com.cn/s/blog_7cb4384d0100qs7f.html 感觉本题关键是要想到[当a-b>b时先手必胜],后面的就只跟奇偶性有关了 ...

  9. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

随机推荐

  1. [Angular] Create a custom validator for template driven forms in Angular

    User input validation is a core part of creating proper HTML forms. Form validators not only help yo ...

  2. [React] Compound Component (React.Children.map & React.cloneElement)

    Imaging you are building a Tabs component. If looks like: <Tabs> <TabList> <Tab> o ...

  3. 安卓View的缓冲机制

    View组件显示的内容能够通过cache机制保存为bitmap, 主要有下面方法: void  setDrawingCacheEnabled(boolean flag),  Bitmap  getDr ...

  4. javascript创建对象的方法--原型模式

    javascript创建对象的方法--原型模式 一.总结 1.原型模式解决内存浪费的方法(继承):通过继承,对象继承原型模式下的所有属性,对象不同于其它对象的的属性自己创建或者修改 2.原型的使用(p ...

  5. 2018-8-10 模拟赛T3(可持久化线段树)

    出题人说:正解离线按DFS序排序线段维护区间和 但是对于树上每个点都有一个区间和一个值,两个点之间求1~m的区间和,这不就是用可持久化线段树吗. 只不过这个线段树需要区间修改,不过不需要标记下传,询问 ...

  6. 代码生成器实现的Entity,Dao,Service,Controller,JSP神器(含代码附件)

    package com.flong.codegenerator; import java.sql.Connection; import java.sql.DatabaseMetaData; impor ...

  7. Redmine安装

    http://www.itnpc.com/news/web/146433249372595.html http://www.cnblogs.com/iluzhiyong/p/redmine.html ...

  8. LayoutAnimation-容器动画

    1.LayoutAnimation的作用主要就是加载到一个layout上,让这个layout里面的所有控件都有相同的动画效果.现在用到的是在listview中添加动画,使得它每一个item都是滑落显示 ...

  9. 94.文件bat脚本自删除

    taskkill / f / im 自删除.exedel 自删除.exedel 1.bat void main() { FILE *pf = fopen("1.bat", &quo ...

  10. SqlParameter的用法

    SqlParameter的用法 关于Sql注入的基本概念,相信不需多说,大家都清楚,经典的注入语句是' or 1=1--单引号而截断字符串,“or 1=1”的永真式的出现使得表的一些信息被暴露出来,如 ...