1.什么是numpy

NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。

包括:

1、一个强大的N维数组对象Array;

2、比较成熟的(广播)函数库;

3、用于整合C/C++和Fortran代码的工具包;

4、实用的线性代数、傅里叶变换和随机数生成函数。

numpy和稀疏矩阵运算包scipy配合使用更加方便。

2.搭建numpy环境

在安装python的环境下,用pip管理工具安装(没有安装pip应先安装pip):

安装pip:sudo apt-get install pip

安装numpy:sudo pip install numpy

安装scipy:sudo pip install scipy

安装matplotlib:sudo pip install matplotlib

3.如何学习

进入python安装包目录

查看安装的numpy包下的__ini__.py文件

"""
NumPy
===== Provides
1. An array object of arbitrary homogeneous items
2. Fast mathematical operations over arrays
3. Linear Algebra, Fourier Transforms, Random Number Generation How to use the documentation
----------------------------
Documentation is available in two forms: docstrings provided
with the code, and a loose standing reference guide, available from
`the NumPy homepage <http://www.scipy.org>`_. We recommend exploring the docstrings using
`IPython <http://ipython.scipy.org>`_, an advanced Python shell with
TAB-completion and introspection capabilities. See below for further
instructions. The docstring examples assume that `numpy` has been imported as `np`:: >>> import numpy as np Code snippets are indicated by three greater-than signs:: >>> x = 42
>>> x = x + 1 Use the built-in ``help`` function to view a function's docstring:: >>> help(np.sort)
... # doctest: +SKIP For some objects, ``np.info(obj)`` may provide additional help. This is
particularly true if you see the line "Help on ufunc object:" at the top
of the help() page. Ufuncs are implemented in C, not Python, for speed.
The native Python help() does not know how to view their help, but our
np.info() function does. To search for documents containing a keyword, do:: >>> np.lookfor('keyword')
... # doctest: +SKIP General-purpose documents like a glossary and help on the basic concepts
of numpy are available under the ``doc`` sub-module:: >>> from numpy import doc
>>> help(doc)
... # doctest: +SKIP Available subpackages
---------------------
doc
Topical documentation on broadcasting, indexing, etc.
lib
Basic functions used by several sub-packages.
random
Core Random Tools
linalg
Core Linear Algebra Tools
fft
Core FFT routines
polynomial
Polynomial tools
testing
NumPy testing tools
f2py
Fortran to Python Interface Generator.
distutils
Enhancements to distutils with support for
Fortran compilers support and more. Utilities
---------
test
Run numpy unittests
show_config
Show numpy build configuration
dual
Overwrite certain functions with high-performance Scipy tools
matlib
Make everything matrices.
__version__
NumPy version string Viewing documentation using IPython
-----------------------------------
Start IPython with the NumPy profile (``ipython -p numpy``), which will
import `numpy` under the alias `np`. Then, use the ``cpaste`` command to
paste examples into the shell. To see which functions are available in
`numpy`, type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
down the list. To view the docstring for a function, use
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
the source code). Copies vs. in-place operation
-----------------------------
Most of the functions in `numpy` return a copy of the array argument
(e.g., `np.sort`). In-place versions of these functions are often
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
Exceptions to this rule are documented. """
from __future__ import division, absolute_import, print_function import sys
import warnings from ._globals import ModuleDeprecationWarning, VisibleDeprecationWarning
from ._globals import _NoValue # We first need to detect if we're being called as part of the numpy setup
# procedure itself in a reliable manner.
try:
__NUMPY_SETUP__
except NameError:
__NUMPY_SETUP__ = False if __NUMPY_SETUP__:
sys.stderr.write('Running from numpy source directory.\n')
else:
try:
from numpy.__config__ import show as show_config
except ImportError:
msg = """Error importing numpy: you should not try to import numpy from
its source directory; please exit the numpy source tree, and relaunch
your python interpreter from there."""
raise ImportError(msg) from .version import git_revision as __git_revision__
from .version import version as __version__ from ._import_tools import PackageLoader def pkgload(*packages, **options):
loader = PackageLoader(infunc=True)
return loader(*packages, **options) from . import add_newdocs
__all__ = ['add_newdocs',
'ModuleDeprecationWarning',
'VisibleDeprecationWarning'] pkgload.__doc__ = PackageLoader.__call__.__doc__ # We don't actually use this ourselves anymore, but I'm not 100% sure that
# no-one else in the world is using it (though I hope not)
from .testing import Tester
test = testing.nosetester._numpy_tester().test
bench = testing.nosetester._numpy_tester().bench # Allow distributors to run custom init code
from . import _distributor_init from . import core
from .core import *
from . import compat
from . import lib
from .lib import *
from . import linalg
from . import fft
from . import polynomial
from . import random
from . import ctypeslib
from . import ma
from . import matrixlib as _mat
from .matrixlib import *
from .compat import long # Make these accessible from numpy name-space
# but not imported in from numpy import *
if sys.version_info[0] >= 3:
from builtins import bool, int, float, complex, object, str
unicode = str
else:
from __builtin__ import bool, int, float, complex, object, unicode, str from .core import round, abs, max, min __all__.extend(['__version__', 'pkgload', 'PackageLoader',
'show_config'])
__all__.extend(core.__all__)
__all__.extend(_mat.__all__)
__all__.extend(lib.__all__)
__all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma']) # Filter annoying Cython warnings that serve no good purpose.
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
warnings.filterwarnings("ignore", message="numpy.ndarray size changed") # oldnumeric and numarray were removed in 1.9. In case some packages import
# but do not use them, we define them here for backward compatibility.
oldnumeric = 'removed'
numarray = 'removed'

此处告诉我们numpy提供什么功能支持,如何使用文档,如何使用numpy内置的帮助功能,可用的子包等等信息。

现在就开始学习!

numpy开发文档:https://docs.scipy.org/doc/numpy/reference/

学习Numpy的更多相关文章

  1. Python学习——numpy.random

    numpy.random.rand numpy.random模块作用是生成随机数,其中numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点 ...

  2. 学习Numpy基础操作

    # coding:utf-8 import numpy as np from numpy.linalg import * def day1(): ''' ndarray :return: ''' ls ...

  3. 如何学习numpy

    可以通过官方中文文档 NumPy 中文文档

  4. Numpy 学习之路(1)——数组的创建

    数组是Numpy操作的主要对象,也是python数据分析的主要对象,本系列文章是本人在学习Numpy中的笔记. 文章中以下都基于以下方式的numpy导入: import numpy as np fro ...

  5. NumPy学习笔记 三 股票价格

    NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...

  6. NumPy学习笔记 二

    NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

  7. NumPy学习笔记 一

    NumPy学习笔记 一 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

  8. Numpy库的学习(四)

    我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a) ...

  9. Pytorch学习笔记(一)Numpy SciPy MatPlotlib Tutorial

    英文原文链接:http://cs231n.github.io/python-numpy-tutorial/ Numpy Numpy是Python中科学计算的核心库.它提供了一个高性能的多维数组对象,以 ...

随机推荐

  1. shell date 命令说明

    shell date 命令说明 使用方法:date [选项]... [+格式] 或:date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]] 以给定的格式 ...

  2. screen-调节屏幕亮度

    今天做项目的时候,需要实现一个功能,就是进入一个应用,在这个应用中,屏幕的亮度变为最亮.关键代码如下 bt1.setOnClickListener(new OnClickListener() { @O ...

  3. 初步使用RecyclerView实现瀑布流

    先看效果 关于RecyclerView,真的是很强大. 个人觉得主要方便的地方是 1.直接可以设置条目布局,通过setLayoutManager LinearLayoutManager:线性布局,横向 ...

  4. Angular:了解Typescript

    Angular是用Typescript构建的.因此在学习Angular之前有必要了解一下Typescript. [ 类型 ] Typescript增加了类型系统,好处是: 1. 有助于代码编写,预防在 ...

  5. log4j.properties配置与加载应用

    log4j.properties总结:   一.介绍 Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务 器 ...

  6. asp.net 查询sql数据表的网页模板

    最近因为工作需求,要制作一个网页模板,主要是用于快速开发,可以查询Sql数据表信息的模板, 昨天做好了,这个只是一个Demo,但是功能已经齐全了, 开发新的网站时,需要新增一个xml,复制粘贴网页的前 ...

  7. BZOJ 3732 Network Kruskal+倍增LCA

    题目大意:给定一个n个点m条边的无向连通图.k次询问两点之间全部路径中最长边的最小值 NOIP2013 货车运输.差点儿就是原题...仅仅只是最小边最大改成了最大边最小.. . 首先看到最大值最小第一 ...

  8. thinkphp 整合 swiftmailer 实现邮件发送

    thinkphp swiftmailer(phpmailer) 文件夹结构 图 1 swiftmailer-phpmailer 将swiftmailer整合到thinkphp中.如上图 1 我下载的版 ...

  9. 使用IPV6

    使用IPV6 知道IPV6已经很久了,但是一直没有使用过. 我使用的IPV4网络一般是 内网-->外网-->互联网,IPV6也不外乎这样,但是对IPV6而言,必须有它的"世界&q ...

  10. Python3的取余操作

    https://blog.csdn.net/u014647208/article/details/53368244 取余代码: 输入以下代码: >>>10%2 >>> ...