360确实很个性,哈哈,你个貔貅,只吃不吐!
Rtrees介绍!参考链接:http://docs.opencv.org/modules/ml/doc/random_trees.html

原文链接:Python opencv实现的手写字符串识别--SVM 、神经网络、 K近邻、 Boosting、Rtrees

代码copy:
#http://www.360doc.com/content/14/0811/10/13997450_400977867.shtml
#code from!
#dataset:http://yann.lecun.com/exdb/mnist/
from cv2.cv import *
import cv2
import os
import struct
import numpy class_n = 10
number_of_training_set = 2000 #0 for all, 60,000 max
number_of_test_set = 0 #0 for all, 10,000 max
#trainimagepath = r'.\data\train-images.idx3-ubyte'
trainimagepath = r'E:\Develope\EclipseWorks\MeachinLearning\Ch16_RandomTrees\data\train-images.idx3-ubyte'
#trainlabelpath = r'.\data\train-labels.idx1-ubyte'
#testimagepath = r'.\data\t10k-images.idx3-ubyte'
#testlabelpath = r'.\data\t10k-labels.idx1-ubyte'
trainlabelpath = r'E:\Develope\EclipseWorks\MeachinLearning\Ch16_RandomTrees\data\train-labels.idx1-ubyte'
testimagepath = r'E:\Develope\EclipseWorks\MeachinLearning\Ch16_RandomTrees\data\t10k-images.idx3-ubyte'
testlabelpath = r'E:\Develope\EclipseWorks\MeachinLearning\Ch16_RandomTrees\data\t10k-labels.idx1-ubyte' def evalfun(method, y_val, test_labels, test_number_of_images):
count = 0
for item in range(test_number_of_images):
if y_val[item] == test_labels[item]:
count += 1
print method + ':' + str(float(count)/test_number_of_images) def unroll_samples(samples):
sample_n, var_n = samples.shape
new_samples = numpy.zeros((sample_n * class_n, var_n+1), numpy.float32)
new_samples[:,:-1] = numpy.repeat(samples, class_n, axis=0)
new_samples[:,-1] = numpy.tile(numpy.arange(class_n), sample_n)
return new_samples def unroll_responses(responses):
sample_n = len(responses)
new_responses = numpy.zeros(sample_n*class_n, numpy.int32)
resp_idx = numpy.int32( responses + numpy.arange(sample_n)*class_n )
new_responses[resp_idx] = 1
return new_responses def readImage(filepath, re_size, number_of_images_set): f = open(filepath, 'rb')
byte = f.read(4)
magic_number = struct.unpack('>i',byte)[0]
byte = f.read(4)
number_of_images = struct.unpack('>i',byte)[0]
if number_of_images_set != 0:
number_of_images = number_of_images_set
#number_of_images = 30000
byte = f.read(4)
number_of_rows = struct.unpack('>i',byte)[0]
byte = f.read(4)
number_of_cols = struct.unpack('>i',byte)[0] images_readed_count = 0
images = numpy.array([], dtype = numpy.float32)
while images_readed_count < number_of_images:
## print 'starting read image' + str(images_readed_count) + \
## ' of ' + str(number_of_images)
byte = f.read(number_of_rows * number_of_cols)
pixels = [numpy.float32(struct.unpack('B', item)[0])/numpy.float32(255) for item in byte]
pixels = numpy.resize(pixels, (number_of_rows, number_of_cols))
left = number_of_cols
right = 0
top = number_of_rows
bottom = 0
for i in range(number_of_rows):
for j in range(number_of_cols):
if pixels[i, j] > 0:
if j < left:
left = j
if j > right:
right = j
if i < top:
top = i
if i > bottom:
bottom = i
if (bottom-top) > (right-left):
length = bottom - top
else:
length = right - left
midx = float(right + left)/2; midy = float(bottom + top)/2
left = int(midx - float(length)/2)
right = int(midx + float(length)/2) + 1
top = int(midy - float(length)/2)
bottom = int(midy + float(length)/2) + 1
left = left if left > 0 else 0
right = right if right < number_of_cols else number_of_cols
top = top if top > 0 else 0
bottom = bottom if bottom < number_of_rows else number_of_rows
pixels = pixels[left:right, top:bottom]
## print str(int(midx - float(length)/2)) + ':' + \
## str(int(midx + float(length)/2)) + ',' + \
## str(int(midy - float(length)/2)) + ':' + \
## str(int(midy + float(length)/2))
pixels = numpy.resize(cv2.resize(pixels, re_size), (1, re_size[0]*re_size[1]))
if images.size == 0:
images = numpy.array(pixels, dtype = numpy.float32)
else:
images = numpy.append(images, pixels, axis = 0)
images_readed_count += 1
f.close()
return number_of_images, images def readLabel(filepath, number_of_images_set):
f = open(filepath, 'rb')
byte = f.read(4)
magic_number = struct.unpack('>i',byte)[0]
byte = f.read(4)
number_of_images = struct.unpack('>i',byte)[0]
if number_of_images_set != 0:
number_of_images = number_of_images_set
#number_of_images = 10000 images_readed_count = 0
labels = numpy.array([], dtype = numpy.float32)
while images_readed_count < number_of_images:
byte = f.read(1)
labels = numpy.append(labels, numpy.float32(struct.unpack('B', byte)[0]))
images_readed_count += 1
f.close()
return number_of_images, labels ##[self.model.predict(s) for s in samples]
## params = dict( kernel_type = cv2.SVM_LINEAR,
## svm_type = cv2.SVM_C_SVC,
## C = 1 )
##
##samples = numpy.array(numpy.random.random((4,2)), dtype = numpy.float32)
##y_train = numpy.array([1.,0.,0.,1.], dtype = numpy.float32)
##
##clf = SVM()
##clf.train(samples, y_train)
##y_val = clf.predict(samples) def ANN_Pridict():
to_size = (8,8) number_of_training_set = 2000
train_number_of_images, train_images = readImage(trainimagepath, to_size, number_of_training_set)
train_number_of_images, train_labels = readLabel(trainlabelpath, number_of_training_set)
##train_images = train_images * 255
##train_images = cv2.normalize(train_images) number_of_test_set = 0
test_number_of_images, test_images = readImage(testimagepath, to_size, number_of_test_set)
test_number_of_images, test_labels = readLabel(testlabelpath, number_of_test_set)
print 'loaded images and labels.'
########ANN#########
modelnn = cv2.ANN_MLP()
sample_n, var_n = train_images.shape
new_train_labels = unroll_responses(train_labels).reshape(-1, class_n)
layer_sizes = numpy.int32([var_n, 100, class_n])
modelnn.create(layer_sizes)
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
bp_dw_scale = 0.001,
bp_moment_scale = 0.0 )
modelnn.train(train_images, numpy.float32(new_train_labels), None, params = params)
ret, resp = modelnn.predict(test_images)
y_val_nn = resp.argmax(-1)
evalfun('nn', y_val_nn, test_labels, test_number_of_images) return [] def KNearestPridict():
to_size = (8,8) number_of_training_set = 2000
train_number_of_images, train_images = readImage(trainimagepath, to_size, number_of_training_set)
train_number_of_images, train_labels = readLabel(trainlabelpath, number_of_training_set)
##train_images = train_images * 255
##train_images = cv2.normalize(train_images) number_of_test_set = 0
test_number_of_images, test_images = readImage(testimagepath, to_size, number_of_test_set)
test_number_of_images, test_labels = readLabel(testlabelpath, number_of_test_set)
print 'loaded images and labels.' ########KNearest#########
modelknn = cv2.KNearest()
modelknn.train(train_images,train_labels)
y_val_knn= modelknn.find_nearest(test_images, k = 3)
count_knn = 0
for item in range(test_number_of_images):
if y_val_knn[1][item][0] == test_labels[item]:
count_knn += 1
print 'knn:'+str(float(count_knn)/test_number_of_images) return [] def SVM_Pridict():
to_size = (8,8) number_of_training_set = 2000
train_number_of_images, train_images = readImage(trainimagepath, to_size, number_of_training_set)
train_number_of_images, train_labels = readLabel(trainlabelpath, number_of_training_set)
##train_images = train_images * 255
##train_images = cv2.normalize(train_images) number_of_test_set = 0
test_number_of_images, test_images = readImage(testimagepath, to_size, number_of_test_set)
test_number_of_images, test_labels = readLabel(testlabelpath, number_of_test_set)
print 'loaded images and labels.' #######SVM##########
modelsvm = cv2.SVM()
modelsvm.train(train_images, train_labels)#, params = params
y_val_svm = [modelsvm.predict(test_image) for test_image in test_images]
evalfun('svm', y_val_svm, test_labels, test_number_of_images) return [] def RTrees_Pridict():
to_size = (8,8) number_of_training_set = 2000
train_number_of_images, train_images = readImage(trainimagepath, to_size, number_of_training_set)
train_number_of_images, train_labels = readLabel(trainlabelpath, number_of_training_set)
##train_images = train_images * 255
##train_images = cv2.normalize(train_images) number_of_test_set = 0
test_number_of_images, test_images = readImage(testimagepath, to_size, number_of_test_set)
test_number_of_images, test_labels = readLabel(testlabelpath, number_of_test_set)
print 'loaded images and labels.' #######RTrees##########
modelRTtree = cv2.RTrees()
sample_n, var_n = train_images.shape
var_types = numpy.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL], numpy.uint8)
params = dict(max_depth=10)
modelRTtree.train(train_images, cv2.CV_ROW_SAMPLE, train_labels, varType = var_types, params = params)
y_val_RTtree = numpy.float32( [modelRTtree.predict(s) for s in test_images] )
evalfun('RTtree', y_val_RTtree, test_labels, test_number_of_images) return [] def Boost_Pridict():
to_size = (8,8) number_of_training_set = 2000
train_number_of_images, train_images = readImage(trainimagepath, to_size, number_of_training_set)
train_number_of_images, train_labels = readLabel(trainlabelpath, number_of_training_set)
##train_images = train_images * 255
##train_images = cv2.normalize(train_images) number_of_test_set = 0
test_number_of_images, test_images = readImage(testimagepath, to_size, number_of_test_set)
test_number_of_images, test_labels = readLabel(testlabelpath, number_of_test_set)
print 'loaded images and labels.' #######Boost#########
modelBoost = cv2.Boost()
sample_n, var_n = train_images.shape
new_train_images = unroll_samples(train_images)
new_train_labels = unroll_responses(train_labels)
var_types = numpy.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL, cv2.CV_VAR_CATEGORICAL], numpy.uint8)
params = dict(max_depth=5) #, use_surrogates=False)
modelBoost.train(new_train_images, cv2.CV_ROW_SAMPLE, new_train_labels, varType = var_types, params=params)
new_test_images = unroll_samples(test_images)
y_val_Boost = numpy.array( [modelBoost.predict(s, returnSum = True) for s in new_test_images] )
y_val_Boost = y_val_Boost.reshape(-1, class_n).argmax(1)
evalfun('Boost', y_val_Boost, test_labels, test_number_of_images) return [] def ML_Pridict():
to_size = (8,8) number_of_training_set = 2000
train_number_of_images, train_images = readImage(trainimagepath, to_size, number_of_training_set)
train_number_of_images, train_labels = readLabel(trainlabelpath, number_of_training_set)
##train_images = train_images * 255
##train_images = cv2.normalize(train_images) number_of_test_set = 0
test_number_of_images, test_images = readImage(testimagepath, to_size, number_of_test_set)
test_number_of_images, test_labels = readLabel(testlabelpath, number_of_test_set)
print 'loaded images and labels.'
########ANN#########
modelnn = cv2.ANN_MLP()
sample_n, var_n = train_images.shape
new_train_labels = unroll_responses(train_labels).reshape(-1, class_n)
layer_sizes = numpy.int32([var_n, 100, class_n])
modelnn.create(layer_sizes)
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
bp_dw_scale = 0.001,
bp_moment_scale = 0.0 )
modelnn.train(train_images, numpy.float32(new_train_labels), None, params = params)
ret, resp = modelnn.predict(test_images)
y_val_nn = resp.argmax(-1)
evalfun('nn', y_val_nn, test_labels, test_number_of_images) ########KNearest#########
modelknn = cv2.KNearest()
modelknn.train(train_images,train_labels)
y_val_knn= modelknn.find_nearest(test_images, k = 3)
count_knn = 0
for item in range(test_number_of_images):
if y_val_knn[1][item][0] == test_labels[item]:
count_knn += 1
print 'knn:'+str(float(count_knn)/test_number_of_images)
#######SVM##########
modelsvm = cv2.SVM()
modelsvm.train(train_images, train_labels)#, params = params
y_val_svm = [modelsvm.predict(test_image) for test_image in test_images]
evalfun('svm', y_val_svm, test_labels, test_number_of_images) #######RTrees##########
modelRTtree = cv2.RTrees()
sample_n, var_n = train_images.shape
var_types = numpy.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL], numpy.uint8)
params = dict(max_depth=10)
modelRTtree.train(train_images, cv2.CV_ROW_SAMPLE, train_labels, varType = var_types, params = params)
y_val_RTtree = numpy.float32( [modelRTtree.predict(s) for s in test_images] )
evalfun('RTtree', y_val_RTtree, test_labels, test_number_of_images)
#######Boost#########
modelBoost = cv2.Boost()
sample_n, var_n = train_images.shape
new_train_images = unroll_samples(train_images)
new_train_labels = unroll_responses(train_labels)
var_types = numpy.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL, cv2.CV_VAR_CATEGORICAL], numpy.uint8)
params = dict(max_depth=5) #, use_surrogates=False)
modelBoost.train(new_train_images, cv2.CV_ROW_SAMPLE, new_train_labels, varType = var_types, params=params)
new_test_images = unroll_samples(test_images)
y_val_Boost = numpy.array( [modelBoost.predict(s, returnSum = True) for s in new_test_images] )
y_val_Boost = y_val_Boost.reshape(-1, class_n).argmax(1)
evalfun('Boost', y_val_Boost, test_labels, test_number_of_images) return []

运行结果:

tree.SVM_Pridict()
loaded images and labels.
svm:0.6251

PythonOpenCV--Rtrees随机森林的更多相关文章

  1. OpenCV:使用OpenCV3随机森林进行统计特征多类分析

    原文链接:在opencv3中的机器学习算法练习:对OCR进行分类 本文贴出的代码为自己的训练集所用,作为参考.可运行demo程序请拜访原作者. CNN作为图像识别和检测器,在分析物体结构分布的多类识别 ...

  2. OpenCV:使用 随机森林与GBDT

    随机森林顾名思义,是用随机的方式建立一个森林.简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训 ...

  3. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  4. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  5. [Machine Learning & Algorithm] 随机森林(Random Forest)

    1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...

  6. 使用脚本自动配置matlab安装libsvm和随机森林工具箱

    前言 支持向量机(SVM)和随机森林 都是用于分类的机器学习算法. 这里我需要对网上的工具箱在matlab中进行配置. 效果演示: 1.双击运行“自动配置.bat” 2.matlab会自动启动,手动配 ...

  7. paper 130:MatLab分类器大全(svm,knn,随机森林等)

    train_data是训练特征数据, train_label是分类标签.Predict_label是预测的标签.MatLab训练数据, 得到语义标签向量 Scores(概率输出).1.逻辑回归(多项式 ...

  8. kaggle数据挖掘竞赛初步--Titanic<随机森林&特征重要性>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  9. 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  10. ML—随机森林·1

    Introduction to Random forest(Simplified) With increase in computational power, we can now choose al ...

随机推荐

  1. 分享接口管理平台 eoLinker AMS 线上专业版V3.0,只为更好的体验,了解一下?

    不知不觉中,eoLinker AMS从2016年上线至今已经三个年头,按照一年一个大版本的迭代计划,我们终于迎来了eoLinker AMS 专业版3.0. AMS产品也从最初专注于API文档管理,成长 ...

  2. eas之kdtable分组

    如何指定是否要进行数据分组以及对哪些列进行分组 // 指定KDTable要进行数据分组 table.getGroupManager().setGroup(true); // 指明要对0.1.2三列进行 ...

  3. HDU1029 - Ignatius and the Princess IV【水题】

    给你n个数字,请你找出出现至少(n+1)/2次的数字. 输入 本题包含多组数据,请处理到EOF: 每组数据包含两行. 第一行一个数字N(1<=N<=999999) ,保证N为奇数. 第二行 ...

  4. 洛谷P1464 Function

    对于一个递归函数w(a,b,c)w(a,b,c) 如果a \le 0a≤0 or b \le 0b≤0 or c \le 0c≤0就返回值11. 如果a>20a>20 or b>20 ...

  5. PHP多进程初探 --- 利用多进程开发点儿东西吧

    [原文地址:https://blog.ti-node.com/blog...] 干巴巴地叨逼叨了这么久,时候表演真正的技术了! 做个高端点儿的玩意吧,加入我们要做一个任务系统,这个系统可以在后台帮我们 ...

  6. ZOJ 3527

    这题难在破环. 对于不是环的情况,只需按照一般的树形DP来做,一步一步往根递推就可以了.对于环,则枚举其中一点的两种情况,取或不取,然后再递推,就可以了.当到达某结点的下一结点为环开始的点时,退出即可 ...

  7. webbench压力測试工具

    apache的測试工具ab 在并发100个以上后会出现错误.网上也有非常多改ab源代码来解禁的. 只是还是推荐一款比較好用的压力測试工具webbench wget http://blog.zyan.c ...

  8. Visual Studio 2013 与 14

    Visual Studio 2013 与 14 假设有曾经版本号的 Visual Studio.再想安装 Visual Studio 14 CTP,默认情况下是不行的. 假设一定要装,当然也是能够的. ...

  9. Linux系统调用具体解释(怎样从用户空间进入内核空间)

    系统调用概述 计算机系统的各种硬件资源是有限的,在现代多任务操作系统上同一时候执行的多个进程都须要訪问这些资源,为了更好的管理这些资源进程是不同意直接操作的,全部对这些资源的訪问都必须有操作系统控制. ...

  10. 浅析hybrid模式下地支付宝钱包和微信

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd2VuY2hhbzEyNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...