HDU 4869 Turn the pokers(思维+组合公式+高速幂)
pid=4869" target="_blank">Turn the pokers
大意:给出n次操作,给出m个扑克。然后给出n个操作的个数a[i],每一个a[i]代表能够翻的扑克的个数,求最后可能出现的扑克的组合情况。
Hint
Sample Input:
3 3
3 2 3
For the this example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
思路:要说清楚不是非常easy。官方题解是这么说的:
“终于的结果一定是连续出现的,仅仅须要求出终于的区间。
由于假设对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是降低偶数次。假设全部数的和是奇数,那么终于结果也一定是奇数。同理,偶数也是一样的。
所以仅仅要递推求出最后的区间,计算sum(C(xi。m)(i=0,1,2。。。))。m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是终于的答案。”
#define LL long long const int MOD = 1000000009;
LL J[100005]; void Init()
{///初始化阶乘表
J[0] = 1;
for(int i = 1; i <= 100005; ++i){
J[i] = J[i-1]*i%MOD;
}
} ///高速幂取模
LL modexp(LL a,LL b,LL n)
{
LL ret=1;
LL tmp=a;
while(b)
{
if(b&1) ret=ret*tmp%n;
tmp=tmp*tmp%n;
b>>=1;
}
return ret;
}
///求组合数 逆元 C(n, m) = n! * (m!*(n-m)!)^(MOD-2)
LL C(LL n, LL m)
{
return J[n]*modexp(J[m]*J[n-m]%MOD, MOD-2, MOD)%MOD;
} int a[100010]; int main()
{
int n, m;
Init();
while(~scanf("%d%d", &n, &m))
{
for(int i = 0; i < n; ++i)
{
scanf("%d", &a[i]);
}
int l = 0;
int r = 1;
int t = 0;
for(int i = 0; i < n; ++i)
{
int ll = min(abs(l-a[i]), abs(r-a[i]));
if(l <= a[i] && r >= a[i])
{
ll = 0;
}
int rr = max(m-abs(l+a[i]-m), m-abs(r+a[i]-m));
if(l <= m-a[i] && r >= m-a[i])
{
rr = m;
} t = (t+a[i])%2;
l = ll;
r = rr;
}
long long ans = 0;
for(int i = l; i <= r; ++i)
{
if(i%2 == t)
{
ans += C(m, i);
ans %= MOD;
}
}
printf("%I64d\n", ans);
} return 0;
}
//官方题解的解组合
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<cmath>
using namespace std;
int a[100005];
__int64 pmod = 1000000009;
__int64 inv[100005];
__int64 ba[100005];
__int64 rba[100005];
#define M 100005
void pre() {
inv[0] = inv[1] = 1;
ba[0] = ba[1] = 1;
rba[0] = rba[1] = 1;
for (int i = 2; i < M; i++) {
inv[i] = ((pmod - pmod / i) * inv[pmod % i]) % pmod;
ba[i] = (ba[i - 1] * i)%pmod;
rba[i] = (rba[i - 1] * inv[i])%pmod;
}
}
__int64 C(int n, int k) {
return (ba[n] * rba[k] % pmod )* rba[n - k] % pmod;
}
HDU 4869 Turn the pokers(思维+组合公式+高速幂)的更多相关文章
- HDU 4869 Turn the pokers(思维+逆元)
考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...
- HDU 4869 Turn the pokers(推理)
HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...
- hdu 4869 Turn the pokers (思维)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4869 Turn the pokers (2014多校联合第一场 I)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu 4869 Turn the pokers(组合数+费马小定理)
Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...
- HDU 4869 Turn the pokers (2014 多校联合第一场 I)
HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...
随机推荐
- how to backup and restore database of SQL Server
Back up 1,右键选中需要备份的数据库,Tasks-->Backup 2.General中,Destination,先remove掉之前的,然后再Add 需要注意的是,add的文件,必须要 ...
- app引导效果introjs的使用
1.引入 <!-- Add IntroJs styles --> <link href="../../introjs.css" rel="stylesh ...
- PHP从数组中删除元素的方法
PHP从数组中删除元素的方法 本篇文章主要介绍了PHP从数组中删除元素的四种方法实例 删除一个元素,且保持原有索引不变 使用 unset 函数,示例如下: 1 2 3 4 5 <?php $ ...
- 用JS把复选框做成单选框,左显示div,右隐藏div
<input type="checkbox" name="checkname" onclick="check(this)"/>左 ...
- Ubuntu16.04进入挂起或休眠状态时按任何键都无法唤醒问题解决办法
挂起(待机)计算机将目前的运行状态等数据存放在内存,关闭硬盘.外设等设备,进入等待状态.此时内存仍然需要电力维持其数据,但整机耗电很少.恢复时计算机从内存读 出数据,回到挂起前的状态,恢复速度较快.一 ...
- thinkserer TD350 系统损坏后,数据恢复及系统重做过程
电脑配置: 联想服务器 TD350 E5-2609V4 2*8G 2*4T+R1 塔式 单电 1.系统恢复: 试过很多种方法,均无效 2.数据恢复: 重新安装系统后,直接在D盘查找 , 原C盘的 ...
- JAVA学习(一)——基本语法
tips:前端开发写惯了弱类型语言,再来学强类型语言,真的是被各种修饰符.类型声明给整的云里雾里,而且java语法和javascript语言差别还是很大的,所以做好笔记,把一些需要注意的地方记下来是非 ...
- NumPy基础入门学习
对于习惯使用了MATLAB的用户而言,学习NumPy这个python工具包付出的成本应该是不大的. NumPy的基本的object是多维数组,是一个有同样类型的数字等构成的一张表格,能够通过元组进行索 ...
- microsoft SQL server,错误2
大二下開始学习数据库,一開始就把数据库装了,结果数据库第一节实验课就是教我们装数据库,而且要在自己机子上装,还要实验报告和截图.老师叫我把原本的卸载掉, 于是对着网上一系列的操作卸载server删除目 ...
- JavaScript中操作对象的属性
1.操作对象的属性 注意: 标签属性与DOM对象属性的相应关系: 绝大部分2者是同样的.如:imgobj.src属性相应<img src="" >中src属性,但也有例 ...