HDU 4869 Turn the pokers(思维+组合公式+高速幂)
pid=4869" target="_blank">Turn the pokers
大意:给出n次操作,给出m个扑克。然后给出n个操作的个数a[i],每一个a[i]代表能够翻的扑克的个数,求最后可能出现的扑克的组合情况。
Hint
Sample Input:
3 3
3 2 3
For the this example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
思路:要说清楚不是非常easy。官方题解是这么说的:
“终于的结果一定是连续出现的,仅仅须要求出终于的区间。
由于假设对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是降低偶数次。假设全部数的和是奇数,那么终于结果也一定是奇数。同理,偶数也是一样的。
所以仅仅要递推求出最后的区间,计算sum(C(xi。m)(i=0,1,2。。。))。m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是终于的答案。”
#define LL long long const int MOD = 1000000009;
LL J[100005]; void Init()
{///初始化阶乘表
J[0] = 1;
for(int i = 1; i <= 100005; ++i){
J[i] = J[i-1]*i%MOD;
}
} ///高速幂取模
LL modexp(LL a,LL b,LL n)
{
LL ret=1;
LL tmp=a;
while(b)
{
if(b&1) ret=ret*tmp%n;
tmp=tmp*tmp%n;
b>>=1;
}
return ret;
}
///求组合数 逆元 C(n, m) = n! * (m!*(n-m)!)^(MOD-2)
LL C(LL n, LL m)
{
return J[n]*modexp(J[m]*J[n-m]%MOD, MOD-2, MOD)%MOD;
} int a[100010]; int main()
{
int n, m;
Init();
while(~scanf("%d%d", &n, &m))
{
for(int i = 0; i < n; ++i)
{
scanf("%d", &a[i]);
}
int l = 0;
int r = 1;
int t = 0;
for(int i = 0; i < n; ++i)
{
int ll = min(abs(l-a[i]), abs(r-a[i]));
if(l <= a[i] && r >= a[i])
{
ll = 0;
}
int rr = max(m-abs(l+a[i]-m), m-abs(r+a[i]-m));
if(l <= m-a[i] && r >= m-a[i])
{
rr = m;
} t = (t+a[i])%2;
l = ll;
r = rr;
}
long long ans = 0;
for(int i = l; i <= r; ++i)
{
if(i%2 == t)
{
ans += C(m, i);
ans %= MOD;
}
}
printf("%I64d\n", ans);
} return 0;
}
//官方题解的解组合
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<cmath>
using namespace std;
int a[100005];
__int64 pmod = 1000000009;
__int64 inv[100005];
__int64 ba[100005];
__int64 rba[100005];
#define M 100005
void pre() {
inv[0] = inv[1] = 1;
ba[0] = ba[1] = 1;
rba[0] = rba[1] = 1;
for (int i = 2; i < M; i++) {
inv[i] = ((pmod - pmod / i) * inv[pmod % i]) % pmod;
ba[i] = (ba[i - 1] * i)%pmod;
rba[i] = (rba[i - 1] * inv[i])%pmod;
}
}
__int64 C(int n, int k) {
return (ba[n] * rba[k] % pmod )* rba[n - k] % pmod;
}
HDU 4869 Turn the pokers(思维+组合公式+高速幂)的更多相关文章
- HDU 4869 Turn the pokers(思维+逆元)
考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...
- HDU 4869 Turn the pokers(推理)
HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...
- hdu 4869 Turn the pokers (思维)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4869 Turn the pokers (2014多校联合第一场 I)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu 4869 Turn the pokers(组合数+费马小定理)
Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...
- HDU 4869 Turn the pokers (2014 多校联合第一场 I)
HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...
随机推荐
- Hue的三大特点、三大功能和架构
不多说,直接上干货! Hue 是 Cloudera 的大数据 Web 工具 官方访问网站 : http://gethue.com/ GitHub : https://github.com/cloude ...
- SQL Server 2000数据库备份与恢复图解
SQL Server 2000数据库备份与恢复图解 四个步骤:1.安装sql server 2000 2.数据库设置: 3.建立自动备份 4.还原数据库 具体图片见附件 本文出自 "李 ...
- SQL中union union all 和in的查询效率问题
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1.UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 ...
- tensorflow学习之路---解决过拟合
''' 思路:1.调用数据集 2.定义用来实现神经元功能的函数(包括解决过拟合) 3.定义输入和输出的数据4.定义隐藏层(函数)和输出层(函数) 5.分析误差和优化数据(改变权重)6.执行神经网络 ' ...
- HBase概念学习(八)开发一个类twitter系统之表设计
这边文章先将可能的需求分析一下,设计出HBase表,下一步再開始编写client代码. TwiBase系统 1.背景 为了加深HBase基本概念的学习,參考HBase实战这本书实际动手做了这个样例. ...
- 【iOS开发-88】事件传递原理解释哪个控件处理事件以及响应者链条的介绍
一.触摸事件传递原理 (1)大的方向是:从父控件传递给子控件. --父控件会先检查自己能否接受事件的处理 --然后再看看触摸在不在自己的范围内 --假设在的话,就遍历子控件.看看有没有合适的子控件能够 ...
- JavaScript中获取Map集合中的key和value值(前提是:既不知道key为什么值,也不知道value有哪些值)
for(var i in maps){//通过定义一个局部变量i遍历获取map里面的所有key值 alert(maps[i]); //通过获取key对应的value值 }
- js--11对象的创建方式
<html> <head> <title>Object</title> </head> <body> <script ty ...
- RTP 和 RTSP的区别
RTP(Real-time Transport Protocol)是用于Internet上针对多媒体数据流的一种传输协议.RTP被定义为在一对一或一对多的传输情况下工作.其目的是提供时间信息和实现流同 ...
- 79.QT解决迷宫问题(面向过程与面向对象)
面向过程: 创建一个类继承dialog,mydialog,添加两个变量 #ifndef MYDIALOG_H #define MYDIALOG_H #include <QDialog>&g ...