Description

永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。

Input

输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000 
 
对于 100%的数据 n≤100000,m≤n,q≤300000

Output

对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。

Sample Input

5 1
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3

Sample Output

-1
2
5
1
2

解题思路:

权值线段树合并,将并查集连接时将线段树合并,最后查询根节点的值就好了

代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
struct trnt{
int ls;
int rs;
int wgt;
}tr[],str;
int fa[];
int imp[];
int root[];
int island[];
int siz;
int n,m;
int bin[];
int top;
char cmd[];
void pushup(int spc)
{
if(!spc)
return ;
tr[spc].wgt=tr[tr[spc].ls].wgt+tr[tr[spc].rs].wgt;
return ;
}
int finf(int x)
{
return x==fa[x]?x:fa[x]=finf(fa[x]);
}
int new_p(void)
{
int ans;
if(top)
ans=bin[top--];
ans=++siz;
tr[ans]=str;
return ans;
}
void del(int &spc)
{
bin[++top]=spc;
spc=;
return ;
}
void build(int &spc,int l,int r,int pos)
{
if(!spc)
spc=new_p();
tr[spc].wgt++;
if(l==r)
return ;
int mid=(l+r)>>;
if(pos<=mid)
build(tr[spc].ls,l,mid,pos);
else
build(tr[spc].rs,mid+,r,pos);
return ;
}
int merge(int spc1,int spc2,int l,int r)
{
if(!spc1||!spc2)
return spc1+spc2;
int spc=new_p();
if(l==r)
{
tr[spc].wgt=tr[spc1].wgt+tr[spc2].wgt;
return spc;
}
int mid=(l+r)>>;
tr[spc].ls=merge(tr[spc1].ls,tr[spc2].ls,l,mid);
tr[spc].rs=merge(tr[spc1].rs,tr[spc2].rs,mid+,r);
pushup(spc);
del(spc1);
del(spc2);
return spc;
}
int kth(int l,int r,int k,int spc)
{
if(l==r)
return l;
int mid=(l+r)>>;
if(tr[spc].wgt<k)
return -;
if(tr[tr[spc].ls].wgt>=k)
return kth(l,mid,k,tr[spc].ls);
else
return kth(mid+,r,k-tr[tr[spc].ls].wgt,tr[spc].rs);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&imp[i]);
fa[i]=i;
build(root[i],,n,imp[i]);
island[imp[i]]=i;
}
for(int i=;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
int fx=finf(a);
int fy=finf(b);
if(a!=b)
{
fa[fx]=fy;
root[fy]=merge(root[fx],root[fy],,n);
}
}
int q;
scanf("%d",&q);
while(q--)
{
scanf("%s",cmd+);
int x,y;
scanf("%d%d",&x,&y);
if(cmd[]=='B')
{
int fx=finf(x);
int fy=finf(y);
if(fy!=fx)
{
fa[fx]=fy;
root[fy]=merge(root[fx],root[fy],,n);
}
}else{
int f=finf(x);
int no=kth(,n,y,root[f]);
if(no==-)
printf("%d\n",-);
else
printf("%d\n",island[no]);
}
}
return ;
}

BZOJ2733: [HNOI2012]永无乡(线段树合并)的更多相关文章

  1. BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

  2. bzoj2733: [HNOI2012]永无乡 线段树合并

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  3. [HNOI2012]永无乡 线段树合并

    [HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...

  4. 【bzoj2733】[HNOI2012]永无乡 线段树合并

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  5. bzoj 2733 : [HNOI2012]永无乡 (线段树合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  6. 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)

    题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...

  7. 2733: [HNOI2012]永无乡 线段树合并

    题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...

  8. Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...

  9. bzoj 2733: [HNOI2012]永无乡 -- 线段树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...

  10. 【BZOJ2733】【HNOI2012】永无乡 - 线段树合并

    题意: Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通 ...

随机推荐

  1. POJ 1682 DP

    原创: http://www.cnblogs.com/proverbs/archive/2012/10/03/2711151.html 超高仿: http://blog.csdn.net/mars_c ...

  2. HDU 5379 Mahjong tree dfs+组合数学

    题意:给你一棵树来分配号码,要求是兄弟节点连续并且每一棵子树连续. 思路:因为要求兄弟和子树都是连续的,所以自己打下草稿就可以发现如果一个节点有3个或3个以上的非叶子结点,那么就无论如何也不能达到目的 ...

  3. 使用LVS 实现负载均衡的原理。

    LVS 负载均衡 负载均衡集群是 Load Balance 集群.是一种将网络上的访问流量分布于各个节点,以降低服务器压力,更好的向客户端提供服务的一种方式.常用 的负载均衡. 开源软件有Nginx. ...

  4. RocketMQ 就是耗内存

    http://blog.csdn.net/loongshawn/article/details/51086876 https://rocketmq.incubator.apache.org/docs/ ...

  5. 洛谷 P1732 [TJOI2011]序列

    P1732 [TJOI2011]序列 题目描述 一指数列A={a1, a2, …, an},根据数列A计算数列B={b1, b2, …, bn},其中: 求\sum\limits^n_{i=1} b_ ...

  6. android应用开发-从设计到实现 3-9 Origami动态原型设计

    动态原型设计 动态的可交互原型产品,是产品经理和界面设计师向开发人员阐释自己设计的最高效工具. 开发人员不须要推測设计师要什么样的效果,照着原型产品做就好了. 非常多创业团队也发现了产品人的这个刚需, ...

  7. openssl之EVP系列之5---EVP_Encrypt系列函数具体解释(二)

    openssl之EVP系列之5---EVP_Encrypt系列函数详细解释(二)    ---依据openssl doc/crypto/EVP_EncryptInit.pod和doc/ssleay.t ...

  8. [Python] Python list slice syntax fun

    # Python's list slice syntax can be used without indices # for a few fun and useful things: # You ca ...

  9. UVa 10101 - Bangla Numbers

    题目:将数字数转化成数字加单词的表示形式输出. 分析:数论.简单题.直接分成两部分除10000000的商和余数,分别输出就可以. 说明:注意输入为数字0的情况,还有long long类型防止溢出. # ...

  10. hdu4253 Two Famous Companies --- 二分+MST

    给n个点.m条边的图.每条边要么属于a公司,要么属于b公司.要求一颗最小生成树,条件是当中属于a公司的边数为k. 这题做法非常巧妙. 要求最小生成树,但有一定限制,搜索.贪心显然都不正确. 要是能找到 ...