[GXOI/GZOI2019]逼死强迫症
设我们最后的答案是\(g_n\)
我们发现在最后竖着放一个\(2\times 1\)的,和横着放两个\(1\times 2\)的就可以区分开之前的方案了
所以如果仅仅使用\(1\times 2\)的块来填满\(2\times n\)的格子,方案数就是\(fib_n\)
于是
\]
后面就是\(fib\)数列,就是把那两个\(1\times 1\)的在最后\(i\)列里强行区分开
于是我们矩乘就好了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||x>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=1e9+7;
struct mat{int a[7][7];}a,s;
inline void reBuild() {
for(re int i=0;i<7;i++)
for(re int j=0;j<7;j++)
a.a[i][j]=0;
a.a[0][1]=a.a[1][0]=a.a[1][1]=1;
a.a[2][3]=a.a[3][3]=a.a[3][2]=1;
a.a[4][5]=a.a[5][6]=1;a.a[1][4]=2;
a.a[6][3]=a.a[6][2]=a.a[6][6]=1;
}
inline mat operator*(mat a,mat b) {
mat c;
for(re int i=0;i<7;i++)
for(re int j=0;j<7;j++)
c.a[i][j]=0;
for(re int k=0;k<7;k++)
for(re int i=0;i<7;i++)
for(re int j=0;j<7;j++)
c.a[i][j]=(c.a[i][j]+1ll*a.a[i][k]*b.a[k][j]%mod)%mod;
return c;
}
inline void ksm(int b) {
s=a;
while(b) {if(b&1) s=s*a;b>>=1;a=a*a;}
}
int main() {
int T=read(),x;
while(T--) {
reBuild();x=read();
ksm(x);printf("%d\n",s.a[1][2]);
}
return 0;
}
[GXOI/GZOI2019]逼死强迫症的更多相关文章
- 【BZOJ5505】[GXOI/GZOI2019]逼死强迫症(矩阵快速幂)
[BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设 ...
- [LOJ3086][GXOI/GZOI2019]逼死强迫症——递推+矩阵乘法
题目链接: [GXOI/GZOI2019]逼死强迫症 设$f[i][j]$表示前$i$列有$j$个$1*1$的格子的方案数,那么可以列出递推式子: $f[i][0]=f[i-1][0]+f[i-2][ ...
- P5303 [GXOI/GZOI2019]逼死强迫症
题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以 ...
- luogu P5303 [GXOI/GZOI2019]逼死强迫症
传送门 只有两行,考虑递推,设\(f_i\)为没有那两个\(1*1\)的,前\(i\)列的方案,可以发现一次可以放一个竖的或两个横的,也就是\(f_i=f_{i-1}+f_{i-2}\) 再设\(g_ ...
- 【详●析】[GXOI/GZOI2019]逼死强迫症
[详●析][GXOI/GZOI2019]逼死强迫症 脑子不够用了... [题目大意] 在\(2\times N\)的方格中用\(N-1\)块\(2\times 1\)的方砖和\(2\)块\(1\tim ...
- 题解 洛谷 P5303 【[GXOI/GZOI2019]逼死强迫症】
可以先去考虑没有\(1 \times 1\)的砖块的情况,对于最后一个位置只有两种情况,一个是竖着用一块砖铺设\(2 \times 1\),另一个为横着用两块砖铺设\(2 \times 2\). 设没 ...
- GXOI/GZOI2019题解
GXOI/GZOI2019题解 P5300 [GXOI/GZOI2019]与或和 一眼题.. 显然枚举每个二进制位,答案就变成了全1子矩阵数量. 这个xjb推推,单调栈一下就行了. #include& ...
- 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
随机推荐
- 浅谈sql中的in与not in,exists与not exists的区别以及性能分析
1.in和exists in是把外表和内表作hash连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询,一直以来认为exists比in效率高的说法是不准确的.如果查询的两个表 ...
- 如何解决WEB应用中文乱码问题
最容易出现乱码的场景是浏览器向服务器发送请求的过程,解决的策略就是强制为请求和响应设置编码格式. 一.POST 方式请求乱码 1. 在每个 Controller 中单独处理 request.setCh ...
- RocketMQ NameServer
NameServer 路由管理,服务注册,服务发现.(类比为soa框架中的zookeeper) 一.路由管理 1.路由注册,由 Broker 向 NameServer 发送心跳,NameServer ...
- Console控制台的正确打开方式
Console控制台的正确打开方式 console对象提供了访问浏览器调试模式的信息到控制台 -- Console对象 |-- assert() 如果第一个参数断言为false,则在控制台输出错误信息 ...
- js-redux学习笔记2
1.为了 dispatch 一个 action,我们需要一个 dispatch 函数.可以用一个 action creator 去发送一个 action. var setNameActionCreat ...
- element-ui inputNumber、Card 、Breadcrumb组件源码分析整理笔记(三)
inputNumber组件 <template> <!--@dragstart.prevent禁止input中数字的拖动--> <div @dragstart.preve ...
- 【读书笔记】iOS-网络-三种错误
一,操作系统错误. iOS人机界面指南中,Apple建议不要过度使用AlertViews,因为这会破坏设备的使用感受. 操作系统错误: 1,没有网络. 2,无法路由到目标主机. 3,没用应和监听目标端 ...
- 配置ArcGIS Server使用LDAP身份认证
1.登陆ArcGIS Server Manager,修改站点的安全设置.选择用户和角色来自现有企业系统(LDAP或Windows域). 2.选择LDAP存储类型. 3.填写LDAP用户存储连接信息.主 ...
- python学习笔记之——python面向对象
Python是一门面向对象语言. 1.面向对象技术介绍 类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例. 类变量:类变量在整个 ...
- Python 列表(List)操作方法详解
Python 列表(List)操作方法详解 这篇文章主要介绍了Python中列表(List)的详解操作方法,包含创建.访问.更新.删除.其它操作等,需要的朋友可以参考下 列表是Python中最基本 ...