题意:给你n个数字,对于任意s,s满足\(s=u_i+u_j+u_k,i<j<k\),要求出所有的s和对应满足条件的i,j,k的方案数

Solution:

构造一个函数:\(A(x)=\sum_{i=0}^{n-1}a_ix^i\),这是一个多项式

对于每一个\(u_i\),我们把这个多项式中的\(x^{u_i}\)的系数\(a_{u_i}\)加上一

也就是说,对于任意\(x^i\),它的系数为i在给出序列中出现的次数

多项式的三次方为:

\[C(x)=A(x)^3\\
C(x)=\sum_{i=0}^{3n}c_ix^i\\
c_i=\sum_{0\le l,j,k\le n,l+j+k=i}a_ja_ka_l
\]

在不考虑\(i<j<k\)的限制条件下,对于任意s,构成s的方案数就是\(C(x)\)中\(x^s\)的系数\(c_s\)

我们再来考虑容斥去重将不符合要求的方案给去掉

考虑当\(i,j,k\)中有两个数相同时,构建多项式:\(B(x)=\sum_{i=0}^{n-1}b_ix^i\)

其中对于任意\(x^i\),它的系数\(b_i\)为\(i/2(i\,mod\,2=0)\)在序列中出现的次数

则对于多项式:\(D(x)=A(x)B(x)\),它的系数就是两数相同的情况的方案数

在\(C(x)\)中它被多加了三次,但减去之后,我们显然可以发现我们将\(i=j=k\)的情况多减了一次

加上后,就得到了不考虑\(i<j<k\)时,\(i\ne j\ne k\)的所有方案数,此时再考虑\(i\le j\le k\),只需把方案数除以6就行了

Code:

#include<bits/stdc++.h>
#define ll long long
#define Pi acos(-1.0)
using namespace std;
const int N=1<<17;
int n,len,tim=17,rtt[N],c[N];
struct cp{double x,y;}aa[N],bb[N],cc[N];
cp operator + (cp a,cp b){return (cp){a.x+b.x,a.y+b.y};}
cp operator - (cp a,cp b){return (cp){a.x-b.x,a.y-b.y};}
cp operator * (cp a,cp b){return (cp){a.x*b.x-a.y*b.y,a.y*b.x+a.x*b.y};}
void FFT(cp *a,int flag){
for(int i=0;i<len;i++)
if(i<rtt[i]) swap(a[i],a[rtt[i]]);
for(int l=2;l<=len;l<<=1){
cp wn=(cp){cos(flag*2*Pi/l),sin(flag*2*Pi/l)};
for(int st=0;st<len;st+=l){
cp w=(cp){1,0};
for(int u=st;u<st+(l>>1);u++,w=w*wn){
cp x=a[u],y=w*a[u+(l>>1)];
a[u]=x+y,a[u+(l>>1)]=x-y;
}
}
}
}
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
int main(){
n=read(),len=N;
for(int i=1;i<=n;i++){
int x=read()+20000;
aa[x].x=aa[x].x+1;
bb[x<<1].x=bb[x<<1].x+1;
c[x+x+x]++;
}
for(int i=0;i<len;i++)
rtt[i]=(rtt[i>>1]>>1)|((i&1)<<(tim-1));
FFT(aa,1);FFT(bb,1);
for(int i=0;i<len;i++)
cc[i]=aa[i]*(aa[i]*aa[i]-(cp){3,0}*bb[i]);
FFT(cc,-1);
for(int i=0;i<N;i++){
ll cnt=((ll){cc[i].x/len+0.5}+2*c[i])/6;
if(cnt) printf("%d : %lld\n",i-60000,cnt);
}
return 0;
}

Spoj 8372 Triple Sums的更多相关文章

  1. SPOJ TSUM Triple Sums(FFT + 容斥)

    题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...

  2. SPOJ:Triple Sums(母函数+FFT)

    You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...

  3. spoj TSUM - Triple Sums fft+容斥

    题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...

  4. 2018.11.18 spoj Triple Sums(容斥原理+fft)

    传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai​,aj​,ak​( ...

  5. SPOJ Triple Sums(FFT+容斥原理)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  6. SPOJ - Triple Sums

    [传送门] FFT第一题! 构造多项式 $A(x) = \sum x ^ {s_i}$. 不考虑题目中 $i < j < k$ 的条件,那么 $A^3(x)$ 每一项对应的系数就是答案了. ...

  7. [SP8372-TSUM]Triple Sums

    题面在这里 description 某\(B\)姓\(OJ\)权限题 给出\(n\)个正整数\(a[i]\),求\(i<j<k\)且\(S=a[i]+a[j]+a[k]\)的三元组\((i ...

  8. spoj-TSUM Triple Sums

    题目描述 题解: 很吊的容斥+$FFT$,但是并不难. 首先,由于有重复,我们要容斥. 怎么办? 记录三个多项式, 只取一个:$w1$; 相同物体拿两个:$w2$; 相同物体拿三个:$w3$; 然后答 ...

  9. 多项式相关&&生成函数相关&&一些题目(updating...)

    文章目录 多项式的运算 多项式的加减法,数乘 多项式乘法 多项式求逆 多项式求导 多项式积分 多项式取对 多项式取exp 多项式开方 多项式的除法/取模 分治FFT 生成函数 相关题目 多项式的运算 ...

随机推荐

  1. maven使用出现的错误

    修改mvn archetype:create  改成mvn archetype:generate 刚开始学习用Maven, 装好了以后生成一个新的project mvnarchetype:genera ...

  2. Java基础系列篇:JAVA多线程 并发编程

    一:为什么要用多线程: 我相信所有的东西都是以实际使用价值而去学习的,没有实际价值的学习,学了没用,没用就不会学的好. 多线程也是一样,以前学习java并没有觉得多线程有多了不起,不用多线程我一样可以 ...

  3. Django Rest Framework源码剖析(五)-----解析器

    一.简介 解析器顾名思义就是对请求体进行解析.为什么要有解析器?原因很简单,当后台和前端进行交互的时候数据类型不一定都是表单数据或者json,当然也有其他类型的数据格式,比如xml,所以需要解析这类数 ...

  4. 20155304《网络对抗》MSF基础应用

    20155304<网络对抗>MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实践,如ms08_ ...

  5. libgdx学习记录9——FreeType,ttf中文显示

    前面讲到使用Hireo创建的BitmapFont以显示中文字体.这种方式效率很高,当所要显示的字的总数较少,并且大小比较固定时,可以采用这种方式. 但是这种也有弊端: (1)字体大小不能随意设置,当放 ...

  6. idea java方法中 传多个参数对象 的复制粘贴快速处理方法

    比如像这种的传多个参数对象,我是直接复制过来,然后把第一个字母改成大写,然后后面的实例对象敲一个第一个字符的小写,回车就直接出来了 在写调用参数的地方,ctrl+p 调出提示,然后按下提示里的实例的第 ...

  7. AngularJS 的异步服务测试与Mocking

    测试 AngularJS 的异步服务 最近,在做项目时掉进了 AngularJS 异步调用 $q 测试的坑中,直接躺枪了.折腾了许久日子,终于想通了其中的道道,但并不确定是最佳的解决方案,最后还是决定 ...

  8. 【分享】Java学习之路:不走弯路,就是捷径

    1.如何学习程序设计? JAVA是一种平台,也是一种程序设计语言,如何学好程序设计不仅仅适用于JAVA,对C++等其他程序设计语言也一样管用.有编程高手认为,JAVA也好C也好没什么分别,拿来就用.为 ...

  9. vsftp在防火墙开启需要开放的端口

    1.开放tcp端口 firewall-cmd --zone=public --add-port=20/tcp --permanent firewall-cmd --zone=public --add- ...

  10. 微软职位内部推荐-Senior Software Engineer - Front End

    微软近期Open的职位: SharePoint is a multi-billion dollar enterprise business that has grown from an on-prem ...