题目链接

B51nod1229

题解

我们要求

\[\sum\limits_{i = 1}^{n}i^{k}r^{i}
\]

如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\)

否则,我们需要将式子进行变形

要与\(n\)无关

\[F(k) = \sum\limits_{i = 1}^{n} i^{k}r^{i}
\]

自然数幂应该是不用去动了,两边乘个\(r\)

\[rF(k) = \sum\limits_{i = 2}^{n + 1}r^{i}(i - 1)^{k}
\]

相减得

\[\begin{aligned}
(r - 1)F(k) &= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}r^{i}((i - 1)^{k} - i^{k}) \\
&= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}r^{i}(\sum\limits_{j = 0}^{k}{k \choose j}(-1)^{k - j}i^{j} - i^{k}) \\
&= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}r^{i}\sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}i^{j} \\
&= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}\sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}i^{j}r^{i} \\
&= r^{n + 1}n^{k} - r + \sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}\sum\limits_{i = 2}^{n}i^{j}r^{i} \\
&= r^{n + 1}n^{k} - r + \sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}(F(j) - r) \\
\end{aligned}
\]

\[F(k) = \frac{r^{n + 1}n^{k} - r + \sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}(F(j) - r)}{r - 1}
\]

边界

\[F(0) = \sum\limits_{i = 1}^{n}r^{i} = r\frac{r^{n} - 1}{r -1}
\]

同样可以实现\(O(k^2)\)递推

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2010,maxm = 100005,INF = 0x3f3f3f3f;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
const int P = 1000000007;
LL F[maxn],B[maxn],fac[maxn],inv[maxn],fv[maxn],N = 2005;
inline LL qpow(LL a,LL b){
LL re = 1; a %= P;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
inline LL C(LL n,LL m){
if (m > n) return 0;
return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
}
void init(){
fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
for (int i = 2; i <= N; i++){
fac[i] = fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = fv[i - 1] * inv[i] % P;
}
B[0] = 1;
for (int k = 1; k < N; k++){
for (int i = 0; i < k; i++)
B[k] = (B[k] + C(k + 1,i) * B[i] % P) % P;
B[k] = 1ll * (P - 1) * inv[k + 1] % P * B[k] % P;
}
}
LL n,K,r;
void work1(){
n %= P;
LL tmp = n,ans = 0;
for (int i = K; ~i; i--){
ans = (ans + C(K + 1,i) * B[i] % P * tmp % P) % P;
tmp = tmp * n % P;
}
ans = ans * inv[K + 1] % P;
printf("%lld\n",(ans + qpow(n,K)) % P);
}
void work2(){
r %= P;
LL tmp = qpow(r,n + 1),t,tt = 1,rv = qpow(r - 1,P - 2);
F[0] = 1ll * (qpow(r,n) + P - 1) % P * rv % P * r % P;
for (int k = 1; k <= K; k++){
t = 0; tt = 1ll * tt * (n % P) % P;
for (int j = 0; j < k; j++)
t = (t + (((k - j) & 1) ? -1ll : 1ll) * C(k,j) * ((F[j] - r) % P) % P) % P;
t = (t + P) % P;
F[k] = ((tmp * tt % P - r) % P + t) % P * rv % P;
}
printf("%lld\n",(F[K] + P) % P);
}
int main(){
init();
int T = read();
while (T--){
n = read(); K = read(); r = read();
if (r == 1) work1();
else work2();
}
return 0;
}

51nod1229 序列求和 V2 【数学】的更多相关文章

  1. 51nod1229 序列求和 V2

    这题...毒瘤吧,可能要写两份代码... 传送门 noteskey 我们考虑这里的复杂度肯定是与 k 相关的,而且平方也是没问题的,那么我们先看看 S(k) 能怎么得到: \[\begin{align ...

  2. [51nod]1229 序列求和 V2(数学+拉格朗日差值)

    题面 传送门 题解 这种颓柿子的题我可能死活做不出来-- 首先\(r=0\)--算了不说了,\(r=1\)就是个裸的自然数幂次和直接爱怎么搞怎么搞了,所以以下都假设\(r>1\) 设 \[s_p ...

  3. 51nod1229-序列求和V2【数学,拉格朗日插值】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1229 题目大意 给出\(n,k,r\)求 \[\sum_{i=1}^ni ...

  4. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  5. HDU 5358 First One 求和(序列求和,优化)

    题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要 ...

  6. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  7. 51nod 1258 序列求和 V4

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4  基准时间限制:8 秒 空间限制:131 ...

  8. 【51Nod1258】序列求和V4(FFT)

    [51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...

  9. 51nod_1236_序列求和 V3 _组合数学

    51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...

随机推荐

  1. 【Python实践-7】输出100以内的所有素数

    #输出100以内的所有素数,素数之间以一个空格区分(注意,最后一个数字之后不能有空格). i= l=[] : k= ,i): : k=k+ : l.append(i) i=i+ print(" ...

  2. 20155311 Exp3 免杀原理与实践

    20155311 Exp3 免杀原理与实践 •免杀 一般是对恶意软件做处理,让它不被杀毒软件所检测.也是渗透测试中需要使用到的技术. [基础问题回答] (1)杀软是如何检测出恶意代码的? 1.通过特征 ...

  3. 使用pandas,7行代码实现朴素贝叶斯

    作者:hhh5460 大抵分成两类 一.离散的.标签化的数据 原文没有使用pandas,我使用pandas重新实现了朴素贝叶斯算法,看起来非常简洁.清爽. import pandas as pd '' ...

  4. P4292 [WC2010]重建计划

    无脑上二分+淀粉质完事了 每个子树算的时候把儿子按照最长路径从小到大依次做,和前面的单调队列算一波,每个儿子的复杂度不超过这个子树大小 // luogu-judger-enable-o2 #inclu ...

  5. CS50.4

    1, PDF,portable document format 便携式文档格式 2, 关于文本编辑器(文字编辑器)和文档编辑器(文字处理器),前者可用来写程序的源代码?名字挺难分辨的. *3, “-o ...

  6. vue基础项目安装教程

    安装node.js 从node.js官网下载并安装node,安装过程很简单,一路“下一步”就可以了. 安装完成之后,打开命令行工具,输入 node -v,如下图,如果出现相应的版本号,则说明安装成功. ...

  7. docker之Dokcerfile 常用指令

    一.Docker语法 Docker语法: FROM 基础镜像base image RUN 执行命令 ADD 添加文件 COPY 拷贝文件 CMD 执行命令 EXPOSE 执行命令 WORKDIR 指定 ...

  8. OpenGL学习(2)——绘制三角形

    在创建窗口的基础上,添加代码实现三角形的绘制. 声明和定义变量 在屏幕上绘制一个三角形需要的变量有: 三角形的三个顶点坐标: Vertex Buffer Object 将顶点数据存储在GPU的内存中: ...

  9. pycharm常用的一些快捷键

    1.编辑(Editing) Ctrl + Space 基本的代码完成(类.方法.属性)Ctrl + Alt + Space 快速导入任意类Ctrl + Shift + Enter 语句完成Ctrl + ...

  10. #个人博客作业Week1——浏览教材后提出的5个问题

    1.对于MSF的团队模型,请问是团队中的哪个角色监督9项原则的实现?是否会浪费时间和精力在践行9项原则上?2.在调查用户需求和用户体验时如何让不同阶层的用户更多的参与度?3.想成为一位优秀的PM需要从 ...