题意:

把很多单独的线段重新组合成一个三角形,使得三角形面积最大(所有的线段都必须用上)。

思路:

三角形的任意一条边的边长不能超过周长的一半,只需要用dp枚举两条边j,k,剩下的一条边长为tot  - j - k;判断枚举出的这三条边是否能组成三角形,用海伦公式求出面积

代码:

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX(a,b) (a > b ? a : b)
#define MIN(a,b) (a < b ? a : b)
#define mem0(a) memset(a,0,sizeof(a)) typedef long long LL;
const double eps = 1e-;
const int MAXN = ;
const int MAXM = ; bool DP[][];
int len[], tot, N; bool Judge(int a,int b,int c)
{
if(a+b>c && a+c>b && b+c>a) return true;
return false;
} double area(int a, int b, int c)
{
double p = (double)(a+b+c)/2.0;
return sqrt(p*(p-a)*(p-b)*(p-c));
} int main()
{
while(~scanf("%d", &N))
{
tot = ; mem0(DP);
for(int i=;i<N;i++)
{
scanf("%d", &len[i]);
tot += len[i];
}
int half = tot/;
DP[][] = ;
for(int i=;i<N;i++)
{
for(int j=half;j>=;j--)
{
for(int k=half;k>=;k--)
{
if((j>=len[i]&&DP[j-len[i]][k]) || (k>=len[i]&&DP[j][k-len[i]]))
{
DP[j][k] = ;
}
}
}
}
double ans = -;
for(int i=;i<=half;i++)
{
for(int j=;j<=half;j++)
{
if(DP[i][j] && Judge(i,j,tot-i-j))
{
ans = max(ans, *area(i,j,tot-i-j));
}
}
}
printf("%d\n", (int)ans);
}
return ;
}

POJ 1948 Triangular Pastures的更多相关文章

  1. [POJ] 1948 Triangular Pastures (DP)

    题目地址:http://poj.org/problem?id=1948 题目大意: 给N条边,把这些边组成一个三角形,问面积最大是多少?必须把所有边都用上. 解题思路: 根据题意周长c已知,求组合三边 ...

  2. poj 1948 Triangular Pastures 小结

    Description Like everyone, cows enjoy variety. Their current fancy is new shapes for pastures. The o ...

  3. POJ 1948 Triangular Pastures【二维01背包】

    题意:给出n条边,用这n条边构成一个三角形,求三角形的最大面积. 先求面积,用海伦公式,s=sqrt(p*(p-a)*(p-b)*(p-c)),其中a,b,c分别为三角形的三条边,p为三角形的半周长, ...

  4. Triangular Pastures POJ - 1948

    Triangular Pastures POJ - 1948 sum表示木条的总长.a[i]表示第i根木条长度.ans[i][j][k]表示用前i条木条,摆成两条长度分别为j和k的边是否可能. 那么a ...

  5. POJ1948 Triangular Pastures

    POJ1948 Triangular Pastures #include <iostream> #include <cmath> using namespace std; ; ...

  6. Triangular Pastures (二维01背包)

    描述Like everyone, cows enjoy variety. Their current fancy is new shapes for pastures. The old rectang ...

  7. POJ 3086 Triangular Sums (ZOJ 2773)

    http://poj.org/problem?id=3086 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1773 让你计算两 ...

  8. poj 1948二维01背包

    题意:给出不多于40个小棍的长度,求出用所有小棍组成的三角形的最大面积. 思路:三角形3边求面积,海伦公式:p=(a+b+c)/2;S=p*(p-a)*(p-b)*(p-c);因为最大周长为1600  ...

  9. POJ - 1948 二维01背包

    T了两发,DP方程很简单粗暴 dp[i][j][k]:用前i物品使得容量分别为j和k的背包恰好装满 背包的调用只需一次即可,第一次T就是每次check都丧心病狂地背包一次 对于sum的枚举,其实i j ...

随机推荐

  1. [转帖]Windows10七大版本区别在哪?

    Windows10七大版本区别在哪? http://os.51cto.com/art/201804/570132.htm 一.Windows10家庭版 对于绝大多数用户来说,最后可能获得的应该就是Wi ...

  2. C# 多线程之Thread类

    使用System.Threading.Thread类可以创建和控制线程. 常用的构造函数有:   // 摘要: // 初始化 System.Threading.Thread 类的新实例,指定允许对象在 ...

  3. google-gson 使用及GsonBuilder设置

    Json是一种类似于XML的通用数据交换格式,具有比XML更高的传输效率.   从结构上看,所有的数据(data)最终都可以分解成三种类型: 第一种类型是标量(scalar),也就是一个单独的字符串( ...

  4. angular安装记录

    1. 安装node.js,下载地址:https://nodejs.org/en/download/,详细的安装教程参考这里:https://blog.csdn.net/u010255310/artic ...

  5. C#小技巧

    1.将字符串转换成大写ToUpper string a="zxc"; a.ToUpper()  输出结果ZXC; a.ToUpper().Contains("Z" ...

  6. hdu 1540 Tunnel Warfare (线段树 区间合并)

    Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  7. MT【186】四边形中的余弦定理

    在四边形$ABCD$中,若$AB=a,BC=b,CD=c,AD=d,AC=e,BD=f$,则 $$a^2c^2+b^2d^2=e^2f^2+2abcd\cos(A+C).$$ 注:这个结果可以看成是余 ...

  8. 【刷题】LOJ 6003 「网络流 24 题」魔术球

    题目描述 假设有 \(n\) 根柱子,现要按下述规则在这 \(n\) 根柱子中依次放入编号为 \(1, 2, 3, 4, \cdots\) 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任 ...

  9. AIO 开始不定时的抛异常: java.io.IOException: 指定的网络名不再可用

    一天里会抛出几个这样的错误,但发现服务还在正常的运行. java.io.IOException: 指定的网络名不再可用. at sun.nio.ch.Iocp.translateErrorToIOEx ...

  10. springcloud与dubbo对比:

    我们直接将结论先列出来,然后逐个分析: 本博客借鉴此文章:http://blog.csdn.net/shuijieshuijie/article/details/53133082 打个不恰当的比喻: ...