POJ2955(KB22-C 区间DP)
Brackets
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
//2017-05-22
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int dp[][];//dp[l][r]表示区间l-r中括号匹配数
//若位置l和r匹配,dp[l][r] = max(dp[l][r], dp[l+1][r-1]+2)
//否则,dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+1][r] int main()
{
string str;
while(cin>>str)
{
if(str[] == 'e')break;
int n = str.length();
memset(dp, , sizeof(dp));
for(int len = ; len < n; len++){
for(int i = ; i+len < n; i++){
int j = i+len;
if((str[i] == '(' && str[j] == ')') || (str[i] == '[' && str[j] == ']'))dp[i][j] = max(dp[i][j], dp[i+][j-]+);
for(int k = i; k <= j; k++)
dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+][j]);
}
}
cout<<dp[][n-]<<endl;
} return ;
}
POJ2955(KB22-C 区间DP)的更多相关文章
- poj2955括号匹配 区间DP
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5424 Accepted: 2909 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ2955 Brackets (区间DP)
很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...
- POJ2955 Brackets(区间DP)
给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- poj2955 区间dp
//Accepted 200 KB 63 ms //区间dp //dp[i][j] 从i位到j位能得到的最大匹配数 //dp[i][j]=max(dp[i+1][j-1] (s[i-1]==s[j-1 ...
- poj2955:括号匹配,区间dp
题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...
- POJ2955【区间DP】
题目链接[http://poj.org/problem?id=2955] 题意:[].()的匹配问题,问一个[]()串中匹配的字符数,匹配方式为[X],(X),X为一个串,问一个长度为N(N<= ...
随机推荐
- Python 关于 encode与decode 中文乱码问题
字符串在Python内部的表示是unicode编码,因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicode,再从unicode编码(en ...
- 项目中jsp的存放
今天早上犯的错, 复习jsp,把jsp放在 WEB-INF 下 我启动项目,想看效果的时候,一直找不到指定的资源404 后来一番探索,我把它拖放在了WebContent 直接访问的,下午看到知识点 ...
- 前端基础-html 字体标签,排版标签,超链接,图片标签
主要内容: 字体标签: h1~h6.<font>.<u>.<b>.<strong><em>.<sup>.<sub> ...
- cad2015卸载/安装失败/如何彻底卸载清除干净cad2015注册表和文件的方法
cad2015提示安装未完成,某些产品无法安装该怎样解决呢?一些朋友在win7或者win10系统下安装cad2015失败提示cad2015安装未完成,某些产品无法安装,也有时候想重新安装cad2015 ...
- flask~数据库
flask与数据库的连接基于flaks_sqlaichemy 扩展 首先要连接数据库的时候必须得先下载 pip install flask-sqlalchemy 这个扩展 flask框架与数据库的连接 ...
- 【xsy2504】farm 容斥原理
题目大意:给你三个数$n,m,s$,满足$n,m,s≤10^{18}$且最大质因数均不大于$10^6$. 问你存在多少个整数$k$,满足$0≤k≤m$,且$(k,0)$,$(0,n)$,$(x,y)$ ...
- 3DMax——室内设计:墙体+吊顶
1.导入CAD平面图 2.将导入的平面图全部选中→颜色设置为其他颜色→设置为组(设置为组,是为了后期选材质方便) 3.选中图形,选择移动工具,输入坐标为0,右键选择冻结当前选择 4.右键“角度捕捉切换 ...
- 基于HA机制的MyCat架构——配置HAProxy
HAProxy简介HAProxy提供高可用性.负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费.快速并且可靠的一种解决方案. HAProxy特别适用于那些负载特大的web站点,这些站 ...
- JDK8简化if-else
简化if-else 1234567891011 User user = ...if (user != null) { String userName = user.getUserName(); if ...
- DROP TABLE 恢复【一】
当DROP TABLE指令敲下的时候,你很爽,你有考虑过后果么?如果该表真的没用,你DROP到无所谓,如果还有用的,这时你肯定吓惨了吧,如果你有备份,那么恭喜你,逃过一劫,如果没有备份呢?这时就该绝望 ...