POJ2955(KB22-C 区间DP)
Brackets
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
//2017-05-22
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int dp[][];//dp[l][r]表示区间l-r中括号匹配数
//若位置l和r匹配,dp[l][r] = max(dp[l][r], dp[l+1][r-1]+2)
//否则,dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+1][r] int main()
{
string str;
while(cin>>str)
{
if(str[] == 'e')break;
int n = str.length();
memset(dp, , sizeof(dp));
for(int len = ; len < n; len++){
for(int i = ; i+len < n; i++){
int j = i+len;
if((str[i] == '(' && str[j] == ')') || (str[i] == '[' && str[j] == ']'))dp[i][j] = max(dp[i][j], dp[i+][j-]+);
for(int k = i; k <= j; k++)
dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+][j]);
}
}
cout<<dp[][n-]<<endl;
} return ;
}
POJ2955(KB22-C 区间DP)的更多相关文章
- poj2955括号匹配 区间DP
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5424 Accepted: 2909 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ2955 Brackets (区间DP)
很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...
- POJ2955 Brackets(区间DP)
给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- poj2955 区间dp
//Accepted 200 KB 63 ms //区间dp //dp[i][j] 从i位到j位能得到的最大匹配数 //dp[i][j]=max(dp[i+1][j-1] (s[i-1]==s[j-1 ...
- poj2955:括号匹配,区间dp
题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...
- POJ2955【区间DP】
题目链接[http://poj.org/problem?id=2955] 题意:[].()的匹配问题,问一个[]()串中匹配的字符数,匹配方式为[X],(X),X为一个串,问一个长度为N(N<= ...
随机推荐
- tcp server
SO_REUSEADDR Ignore SIGPIPE TCP_NODELAY TCP_QUICKACK
- Akka(42): Http:身份验证 - authentication, authorization and use of raw headers
当我们把Akka-http作为数据库数据交换工具时,数据是以Source[ROW,_]形式存放在Entity里的.很多时候除数据之外我们可能需要进行一些附加的信息传递如对数据的具体处理方式等.我们可以 ...
- vue-cli初始化一个项目
1,换成淘宝源: npm config set registry https://registry.npm.taobao.org/ 检查是否修改成功 npm config get registry 2 ...
- underscore.js源码研究(5)
概述 很早就想研究underscore源码了,虽然underscore.js这个库有些过时了,但是我还是想学习一下库的架构,函数式编程以及常用方法的编写这些方面的内容,又恰好没什么其它要研究的了,所以 ...
- Data - 数据思维
数据思维 数据思维全解析 如何建立数据分析的思维框架 做数据分析时,你的方法论是什么? 数据分析全流程资料,适合各路人马 百度内部培训资料PPT:数据分析的道与术 学会数据分析背后的挖掘思维,分析就完 ...
- 【sping揭秘】7、国际化信息支持
Spring提供messagesource接口,来进行国际化事务处理 Applicationcontext会优先找一个名为messageSouce的messageSource接口实现bean,如果找不 ...
- odoo开发笔记-日期时间相关操作
日期格式化字符串:DATE_FORMAT = "%Y-%m-%d" 日期时间格式字符串:DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" ...
- PyCharm下载与激活
1.集成开发环境(IDE:Integrated Development Environment)PyCharm下载地址:https://www.jetbrains.com/pycharm/downlo ...
- CentOS6.7-64bit编译hadoop2.6.4
1.下载maven(apache-maven-3.3.3-bin.tar.gz) http://archive.apache.org/dist/maven/maven-3/3.3.3/binaries ...
- 为什么研发团队不适合量化KPI的绩效考核?
研发团队(如果不是外包,不是机械性的活动)如果进行的是creative的有创造性的智力活动,那么应该不适合用量化KPI的绩效考核和激励,不应该用工时.bug数(难度大的bug可能多,测试人员可能没有经 ...