POJ2955(KB22-C 区间DP)
Brackets
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
//2017-05-22
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int dp[][];//dp[l][r]表示区间l-r中括号匹配数
//若位置l和r匹配,dp[l][r] = max(dp[l][r], dp[l+1][r-1]+2)
//否则,dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+1][r] int main()
{
string str;
while(cin>>str)
{
if(str[] == 'e')break;
int n = str.length();
memset(dp, , sizeof(dp));
for(int len = ; len < n; len++){
for(int i = ; i+len < n; i++){
int j = i+len;
if((str[i] == '(' && str[j] == ')') || (str[i] == '[' && str[j] == ']'))dp[i][j] = max(dp[i][j], dp[i+][j-]+);
for(int k = i; k <= j; k++)
dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+][j]);
}
}
cout<<dp[][n-]<<endl;
} return ;
}
POJ2955(KB22-C 区间DP)的更多相关文章
- poj2955括号匹配 区间DP
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5424 Accepted: 2909 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ2955 Brackets (区间DP)
很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...
- POJ2955 Brackets(区间DP)
给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- poj2955 区间dp
//Accepted 200 KB 63 ms //区间dp //dp[i][j] 从i位到j位能得到的最大匹配数 //dp[i][j]=max(dp[i+1][j-1] (s[i-1]==s[j-1 ...
- poj2955:括号匹配,区间dp
题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...
- POJ2955【区间DP】
题目链接[http://poj.org/problem?id=2955] 题意:[].()的匹配问题,问一个[]()串中匹配的字符数,匹配方式为[X],(X),X为一个串,问一个长度为N(N<= ...
随机推荐
- (转)Java并发编程:线程池的使用方法
http://www.cnblogs.com/dolphin0520/p/3932921.html http://www.journaldev.com/1069/java-thread-pool-ex ...
- (转)IHS配置安全漏洞: 支持不推荐使用的 SSL 版本、在降级的旧加密上填充 Oracle、检测到 RC4 密码套件、支持弱 SSL 密码套件、 重构 RSA 导出键(又称为 FREAK)
原文:https://blog.csdn.net/lyd135364/article/details/52179426 都是由于ihs配置中支持不推荐使用的ssl版本和弱密码套件引起的. 只要在配置文 ...
- (转)深入浅出 RPC - 深入篇
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/mindfloating/article/details/39474123 <深入篇>我们 ...
- (转)Python3.5 queue模块详解
原文:https://www.cnblogs.com/CongZhang/p/5274486.html queue介绍 queue是python中的标准库,俗称队列,可以直接import 引用,在py ...
- JavaScript与CSS相对路径引用的差异
转自:http://blog.csdn.net/luohuidong01/article/details/74938652 JS跟CSS相对路径引用的差异在于他们的参考点不一样,下面举个例子说明一下. ...
- Mac 下配置 Python 开发环境
➜ ~ sudo brew install python3 ==> Downloading https://www.python.org/ftp/python/3.5.1/Python-3.5. ...
- Hadoop不适合处理实时数据的原因剖析
1.概述 Hadoop已被公认为大数据分析领域无可争辩的王者,它专注与批处理.这种模型对许多情形(比如:为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的实时信息.为了解 ...
- 26-hadoop-hbase简介
hadoop的生态系统 1, hbase简介 –HBase–HadoopDatabase,是一个高可靠性.高性能.面向列.可伸缩.实时读写的分布式数据库 –利用HadoopHDFS作为其文件存储系统, ...
- MVC源码分析 - Authorize授权过滤器
从 上一篇 其实能看到, 程序执行的过滤器, 有四种 : 过滤器类型 接口 描述 Authorization IAuthorizationFilter 此类型(或过滤器)用于限制进入控制器或控制器的某 ...
- Java中mongodb使用and和or的复合查询
在MongoDB的JAVA查询中对应这些问题 and查询 //条件 startsAt< curr and endsAt > curr long curr = new Date().getT ...