Inviting Friends(hdu3244 && zoj3187)完全背包+二分
Inviting Friends
Time Limit: 1 Second Memory Limit: 32768 KB
You want to hold a birthday party, inviting as many friends as possible, but you have to prepare enough food for them. For each person, you need n kinds of ingredient to make good food. You can use the ingredients in your kitchen, or buy some new ingredient packages. There are exactly two kinds of packages for each kind of ingredient: small and large.
We use 6 integers to describe each ingredient: ,x, y, s1, p1, s2, p2, where x is the amount (of this ingredient) needed for one person, y is the amount currently available in the kitchen, s1 and p1 are the size (the amount of this ingredient in each package) and price of small packages, s2 and p2 are the size and price of large packages.
Given the amount of money you can spend, your task is to find the largest number of person who can serve. Note that you cannot buy only part of a package.
Input
There are at most 10 test cases. Each case begins with two integers n and m (1 <= n <= 100, 1 <= m <= 100000), the number of kinds of ingredient, and the amount of money you have. Each of the following n lines contains 6 positive integers x, y, s1, p1, s2, p2 to describe one kind of ingredient (10 <= x <= 100, 1 <= y <= 100, 1 <= s1 <= 100, 10 <= p1 <= 100, s1 < s2 <= 100, p1 < p2 <= 100). The input ends with n = m = 0.
Output
For each test case, print the maximal number of people you can serve.
Sample Input
2 100
10 8 10 10 13 11
12 20 6 10 17 24
3 65
10 5 7 10 13 14
10 5 8 11 14 15
10 5 9 12 15 16
0 0
Sample Output
5
2 题意:邀请朋友,要准备n种原料,每种原料有6个参数:x,y,s1,p1,s2,p2。表示的含义分别是:对于第i种原料,每个人的需求量是x,现在还剩下y的量,每种原料有2种包装,一种小包的,一种打包的,每一小包的量是s1,价格是p1,打包的量是s2,价格是p2。现在给你n种原料和m的钱,求最多能请几个人。 解题思路:二分法枚举人数,然后再根据人数判断能不能满足那么确定人数之后,就要根据人数求出每种原料的最少花钱,看会不会超支对于没一个原料都求一次完全背包,背包容量就是你需要的数量加上大包的容量,然后在need到上限间找出最小值就OK 完全背包+二分: 我正在学习。。。。 题目连接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3187 或
http://acm.hdu.edu.cn/showproblem.php?pid=3244
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; int n,m;
const int maxn = ;
const int inf = 0x3f3f3f3f; struct node
{
int s1,s2;
int p1,p2;
int x,y; }t[maxn]; int cal_r()
{
int ret=inf;
for(int i=;i<=n;i++)
{
if(t[i].s1*1.0/t[i].p1 >= t[i].s2*1.0/t[i].p2)
{
int tmp = (m/t[i].p1*t[i].s1)+t[i].y;//都买一个看有多少
int p = tmp/t[i].x;//人数;
ret=min(ret,p);//找最小的最大人数
}
else
{
int tmp = (m/t[i].p2*t[i].s2)+t[i].y;
int p = tmp/t[i].x;
ret=min(ret,p);
}
}
return ret;//返回最小的最大人数;
} int dp[+]; int cal_need(int i,int need)
{
int w[],c[];
c[]=t[i].p1;
w[]=t[i].s1;
c[]=t[i].p2;
w[]=t[i].s2; int V=need+t[i].s2; for(int i=;i<=V;i++)
dp[i]=inf; dp[]=; for(int i=;i<;i++)//完全背包
{
for(int v=w[i];v<=V;v++)
dp[v]=min(dp[v],dp[v-w[i]]+c[i]);
} int ret = inf;
for(int i=need;i<=V;i++)
ret = min(ret,dp[i]); return ret;
} bool judge(int k)//判断人数是否符合购买力。。。
{
int s=;
for(int i=;i<=n;i++)
{
int need = t[i].x*k-t[i].y;
if(need<=)
continue;
int tmp = cal_need(i,need);//需要多少钱;
s+=tmp;
if(s>m)
return false;
}
return true;
} int main()
{
while(~scanf("%d%d",&n,&m) && n+m)
{
for(int i=;i<=n;i++)
scanf("%d%d%d%d%d%d",&t[i].x,&t[i].y,&t[i].s1,&t[i].p1,&t[i].s2,&t[i].p2);
int r=cal_r();
int l=;
int ans = ;
//printf("r %d\n",r);
while(l<=r)
{
int mid=(l+r)>>;
if(judge(mid))
{
ans=mid;
l=mid+;
}
else
r=mid-;
}
printf("%d\n",ans);
}
return ;
}
背包!加油加油!!!!!
Inviting Friends(hdu3244 && zoj3187)完全背包+二分的更多相关文章
- POJ3111 K Best(另类背包+二分+变态精度)
POJ3111 K Best,看讨论区说数据有点变态,精度要求较高,我就直接把循环写成了100次,6100ms过,(试了一下30,40都会wa,50是4000ms) 第一次在POJ上看到下面这种东西还 ...
- caioj 1086 动态规划入门(非常规DP10:进攻策略)
一开始看到题目感觉很难 然后看到题解感觉这题贼简单,我好像想复杂了 就算出每一行最少的资源(完全背包+二分)然后就枚举就好了. #include<cstdio> #include<a ...
- Inviting Friends(二分+背包)
Inviting Friends Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- U - Inviting Friends HDU - 3244(二分答案 + 完全背包)
U - Inviting Friends HDU - 3244 You want to hold a birthday party, inviting as many friends as possi ...
- P2370 yyy2015c01的U盘(二分+背包)
思路:先说一下题意吧.就是给你n个文件大小为v,价值为c, 但是硬盘的大小为S, 而且要存的总价值大于等于p.问每次传输k大小的文件.问k的最大值是多少? 我们以k为二分对象. 直接讲检验函数吧. 假 ...
- 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...
- CF-1055E:Segments on the Line (二分&背包&DP优化)(nice problem)
You are a given a list of integers a 1 ,a 2 ,…,a n a1,a2,…,an and s s of its segments [l j ;r j ] [ ...
- 【8.31校内测试】【找规律二分】【DP】【背包+spfa】
打表出奇迹!表打出来发现了神奇的规律: 1 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12 12 12 13 14 14 15 16 16 16 16 16.. ...
- bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】
01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...
随机推荐
- Mysql数据引擎和系统库
系统数据库 information_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等performance_schema: MySQL ...
- [Spring]IOC控制反转和DI依赖注入
从之前算起到现在接触Spring也已经有几天了,进度也不是很快,就只弄懂了控制反转和依赖注入那么一点东西.然后敲了两个demo 主要是因为之前没有学过,然后网上资源很多但是都不是面向我们初学者的,大多 ...
- odoo开发笔记 -- odoo和postgresql数据库导入相关
odoo数据库 导入.导出 首先odoo框架下postgresql数据库中,表结构的存储方式: 存在id(小写),并没有所谓的外部ID 例如数据库中的国家表:模块名_tb_country (注意: ...
- java ant 编译打包build.xml完整配置范例
java ant 编译打包build.xml完整配置范例 <?xml version="1.0" encoding="UTF-8" ?> <p ...
- 鼠标右键添加"在此处打开命令窗口"
从windows7开始,提供了一个便于从当前文件夹打开cmd命令行窗口的快捷方式: 直接使用 Shift+鼠标右键==>“在此处打开命令行窗口” 有可能以后会遇到的问题,可参考如下.. htt ...
- c++获取随机数
方法一: 使用 rand 函数可以获取,如下. 随机数大小是在0到RAND_MAX,值为2147483647,它是在stdlib中定义的,如果我们希望在某个范围内,可以使用 % 结合 / 来实现. 但 ...
- ElasticSearch入门2: 基本用法
基本用法: 一.索引创建 (启动集群和索引请看上一篇文章:http://www.cnblogs.com/liuxiaoming123/p/8081883.html) 1.打开浏览器,输入请求:htt ...
- Shell 相互调用
Shell 文件包含 和其他语言一样,Shell 也可以包含外部脚本.这样可以很方便的封装一些公用的代码作为一个独立的文件. Shell 文件包含的语法格式如下: . filename # 注意点号( ...
- (转)如何入门 Python 爬虫
“入门”是良好的动机,但是可能作用缓慢.如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习. 另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么 ...
- ASP.NET状态管理的总结
阅读目录 开始 hidden-input QueryString Cookie ApplicationState ViewState,ControlState Session Profile 各种状态 ...