【deep learning学习笔记】注释yusugomori的DA代码 --- dA.cpp -- 模型测试
测试代码。能看到,训练的时候是单个样本、单个样本的训练的,在NN中是属于“stochastic gradient descent”,否则,一批样本在一起的,就是“standard gradient descent”。
void test_dA()
{
srand(0); double learning_rate = 0.1;
double corruption_level = 0.3;
int training_epochs = 100; int train_N = 10;
int test_N = 2;
int n_visible = 20;
int n_hidden = 5; // training data
int train_X[10][20] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0}
}; // construct dA
dA da(train_N, n_visible, n_hidden, NULL, NULL, NULL); // train
for(int epoch=0; epoch<training_epochs; epoch++)
{
// train it sample by sample
for(int i=0; i<train_N; i++)
{
da.train(train_X[i], learning_rate, corruption_level);
}
} // test data
int test_X[2][20] =
{
{1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0}
};
double reconstructed_X[2][20]; // test
for(int i=0; i<test_N; i++)
{
da.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++)
{
printf("%.5f ", reconstructed_X[i][j]);
}
cout << endl;
}
cout << endl;
} int main()
{
test_dA(); getchar();
return 0;
}
程序运行结果:
【deep learning学习笔记】注释yusugomori的DA代码 --- dA.cpp -- 模型测试的更多相关文章
- 【deep learning学习笔记】注释yusugomori的DA代码 --- dA.h
DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别 ...
- 【deep learning学习笔记】注释yusugomori的RBM代码 --- 头文件
百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python ...
- [置顶]
Deep Learning 学习笔记
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...
- Deep Learning 学习笔记(8):自编码器( Autoencoders )
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得 ...
- 【deep learning学习笔记】Recommending music on Spotify with deep learning
主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲 ...
- Neural Networks and Deep Learning学习笔记ch1 - 神经网络
近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...
- paper 149:Deep Learning 学习笔记(一)
1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...
- Deep Learning 学习笔记——第9章
总览: 本章所讲的知识点包括>>>> 1.描述卷积操作 2.解释使用卷积的原因 3.描述pooling操作 4.卷积在实践应用中的变化形式 5.卷积如何适应输入数据 6.CNN ...
- 【Deep Learning学习笔记】Dynamic Auto-Encoders for Semantic Indexing_Mirowski_NIPS2010
发表于NIPS2010 workshop on deep learning的一篇文章,看得半懂. 主要内容: 是针对文本表示的一种方法.文本表示可以进一步应用在文本分类和信息检索上面.通常,一篇文章表 ...
- 【deep learning学习笔记】最近读的几个ppt(四)
这几个ppt都是在微博上看到的,是百度的一个员工整理的. <Deep Belief Nets>,31页的一个ppt 1. 相关背景 还是在说deep learning好啦,如特征表示云云. ...
随机推荐
- auth.User.groups: (fields.E304)
配置用户信息的models时,如果继承Abstractuser类时,报错: ERRORS:auth.User.groups: (fields.E304) Reverse accessor for 'U ...
- Python 项目实践三(Web应用程序) 第三篇
接着上节的继续学习,现在要显示所有主题的页面 有了高效的网页创建方法,就能专注于另外两个网页了:显示全部主题的网页以及显示特定主题中条目的网页.所有主题页面显示用户创建的所有主题,它是第一个需要使用数 ...
- Chart.js Y轴数据以百分比展示
新手一枚,解决的问题喜欢记录,也许正好有人在网上迷茫的百度着.-0- 最近使用Chart.js做折线图的报表展示,直接显示整数啥的很好弄毕竟例子直接在哪里可以用,百分比就没办法了.百度慢慢汲取营养,虽 ...
- python-tkinter学习实例
在好友的邀请下,尝试用tkinter做一个卡牌的普通界面显示,正好练习下python的写法. 花了两天学习,写了两天代码,做了个最基本的demo.显示如下: 其中需要引入的第三方库主要有,PIL.P ...
- 闲话函数式变成与OOP
函数式编程扫盲篇 推薦參考文獻地址:http://byvoid.github.io/slides/apio-fp/index.html 1. 概论 在过去的近十年的时间里,面向对象编程大行其道.以至于 ...
- 使用 IntraWeb (22) - 基本控件之 TIWCalendar
TIWCalendar: 日历控件, 继承于 TIWCustomGrid, 所以它和 TIWGrid 共同属性特多. 它的 Cell 是 TIWCalendarCell 对象, 直接从 TIWGrid ...
- MikroTik RouterOS虚拟机/实体机安装方法
一.设置光驱 二.安装RouerOS 按a全选,按i安装,q退出,空格可以选取或取消选取.这里是选择你要安装的组件. 是否要保存原有配置:是否要提交.一路y. 安装好之后按回车重启:之后为这个界面,安 ...
- Jedis使用总结【pipeline】【分布式的id生成器】【分布式锁【watch】【multi】】【redis分布式】(转)
前段时间细节的了解了Jedis的使用,Jedis是redis的java版本的客户端实现.本文做个总结,主要分享如下内容: [pipeline][分布式的id生成器][分布式锁[watch][multi ...
- Java clone() 浅克隆与深度克隆(转)
以下文字转自:桔子园 http://www.blogjava.net/orangelizq/archive/2007/10/17/153573.html 现在Clone已经不是一个新鲜词语了,伴随着“ ...
- windows和linux 下将tomcat注册为服务
参考文献: tomcat注册成windows服务 背景 当前项目需要运行两个Tomcat,每次启动系统以后都要手动进入到tomcat目录执行startup.bat,非常烦,所以想将这两个tomcat直 ...