【题目大意】

给出一张有点权的有向图,已知起点和可以作为终点的一些点,问由起点出发,每条边和每个点可以经过任意多次,经过点的权值总和最大为多少。

【思路】

由于可以走任意多次,显然强连通分量可以缩点。然后就是一张DAG图,跑SPFA最长路就好了。

听说Dijkstra写最长路会发生一些奇特的化学反应并且炸掉,还没想清楚姑且笔记一下。

 #include<bits/stdc++.h>
using namespace std;
const int MAXN=+;
struct edge
{
int to,len;
};
int n,m,s,p,money[MAXN],bar[MAXN],u[MAXN],v[MAXN];
vector<int> E[MAXN];
vector<edge> rE[MAXN];
stack<int> S;
queue<int> que;
int instack[MAXN],low[MAXN],dfn[MAXN],sum[MAXN],col[MAXN],cnt,tot;
int dis[MAXN],inque[MAXN]; void addedge(int u,int v)
{
E[u].push_back(v);
} void addedge2(int u,int v,int w)
{
rE[u].push_back((edge){v,w});
} void tarjan(int x)
{
dfn[x]=low[x]=++cnt;
instack[x]=;
S.push(x);
for (int i=;i<E[x].size();i++)
{
int to=E[x][i];
if (!instack[to])
{
tarjan(to);
low[x]=min(low[x],low[to]);
}
else if (instack[to]==)
{
low[x]=min(low[x],dfn[to]);
}
} if (dfn[x]==low[x])
{
tot++;
int tmp;
do
{
tmp=S.top();S.pop();
sum[tot]+=money[tmp];
col[tmp]=tot;
instack[tmp]=;
}while (tmp!=x);
}
} void spfa(int start)
{
memset(inque,,sizeof(inque));
for (int i=;i<=tot;i++) dis[i]=;
dis[start]=sum[start];
inque[start]=;
que.push(start);
while (!que.empty())
{
int head=que.front();que.pop();
inque[head]=;
for (int i=;i<rE[head].size();i++)
{
int to=rE[head][i].to,len=rE[head][i].len;
if (dis[to]<dis[head]+len)
{
dis[to]=dis[head]+len;
if (!inque[to])
{
inque[to]=;
que.push(to);
}
}
}
}
} void rebuild()
{
for (int i=;i<=m;i++)
if (col[u[i]]!=col[v[i]]) addedge2(col[u[i]],col[v[i]],sum[col[v[i]]]);
} void init()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d",&u[i],&v[i]);
addedge(u[i],v[i]);
}
for (int i=;i<=n;i++) scanf("%d",&money[i]);
memset(bar,,sizeof(bar));
scanf("%d%d",&s,&p);
for (int i=;i<=p;i++)
{
int nowp;
scanf("%d",&nowp);
bar[nowp]=;
}
} void solve()
{
cnt=tot=;
memset(instack,,sizeof(instack));
for (int i=;i<=n;i++)
if (!instack[i]) tarjan(i);
rebuild();
spfa(col[s]);
int ans=-;
for (int i=;i<=n;i++)
if (bar[i]) ans=max(ans,dis[col[i]]);
printf("%d",ans);
} int main()
{
init();
solve();
return ;
}

【tarjan+SPFA】BZOJ1179-[Apio2009]Atm的更多相关文章

  1. 【强连通分量+spfa】Bzoj1179 Apio2009 Atm

    Description Solution 显然缩强连通分量,然后求最长路,虽然是DAG但还是有点麻烦,于是用了spfa. Code 重建图_数组写错好多次,感觉做这题也就是练了一下实现. #inclu ...

  2. 【强联通分量缩点】【最短路】【spfa】bzoj1179 [Apio2009]Atm

    缩点后转化成 DAG图上的单源最长路问题.spfa/dp随便. #include<cstdio> #include<queue> #include<algorithm&g ...

  3. bzoj 1179: [Apio2009]Atm【tarjan+spfa】

    明明优化了spfa还是好慢-- 因为只能取一次值,所以先tarjan缩点,把一个scc的点权和加起来作为新点的点权,然后建立新图.在新图上跑spfa最长路,最后把酒吧点的dis取个max就是答案. # ...

  4. 缩点+spfa最长路【bzoj】 1179: [Apio2009]Atm

    [bzoj] 1179: [Apio2009]Atm Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri ...

  5. BZOJ1179 [Apio2009]Atm 【tarjan缩点】

    1179: [Apio2009]Atm Time Limit: 15 Sec  Memory Limit: 162 MB Submit: 4048  Solved: 1762 [Submit][Sta ...

  6. BZOJ1179 : [Apio2009]Atm 缩点+spfa

    1179: [Apio2009]Atm Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 2069  Solved: 826[Submit][Status ...

  7. 【tarjan+拓扑】BZOJ3887-[Usaco2015 Jan]Grass Cownoisseur

    [题目大意] 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) [思路] 首先 ...

  8. 【BZOJ】1179: [Apio2009]Atm(tarjan+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1179 缩点建图... #include <cstdio> #include <cs ...

  9. bzoj1179: [Apio2009]Atm 【缩点+spfa最长路】

    题目传送门 Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruser i 银行的 ATM 取款机.令人奇怪的是,S ...

随机推荐

  1. Spark记录-Scala数组

    Scala提供了一种数据结构叫作数组,数组是一种存储了相同类型元素的固定大小顺序集合.数组用于存储数据集合,但将数组视为相同类型变量的集合通常更为有用. 可以声明一个数组变量,例如:numbers,使 ...

  2. [转载]jdk环境变量配置方法

    JDK下载 在安装完jdk后,还需要对jdk的环境变量进行配置才能正常使用,下面教大家如何配置jdk环境变量: 1.右键选择 计算机→属性→高级系统设置→高级→环境变量 2.系统变量→新建 变量名:J ...

  3. 关于z-index这个层级的问题

    z-index它可真是一个神奇的东西,它可以随意安排你的层的叠加问题. 如你想让红色矩形压在蓝色矩形上,正常布局先建立一个红色的再建议一个蓝色的,就可以了. 但如果我相反来建立,那么就得借助z-ind ...

  4. 在 Linux 中安装 VMware Tools

    由于较新的Linux版本中都包含了vm的部分组件,导致直接安装VMware Tools失败.所以这里写了篇新的. 软件版本:VMware 12 Linux版本:Ubuntu Desktop 16.04 ...

  5. MyCat分库分表入门

    1.分区 对业务透明,分区只不过把存放数据的文件分成了许多小块,例如mysql中的一张表对应三个文件.MYD,MYI,frm. 根据一定的规则把数据文件(MYD)和索引文件(MYI)进行了分割,分区后 ...

  6. HDU 2054 又见GCD

    又见GCD Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. CTSC/APIO2018滚粗记

    CTSC/APIO2018滚粗记 前言 从\(5.5\)晚上的火车到\(5.14\)早上的高铁 \(10\)天的时间真的过去的很快. 眨眼间,就到了今天晚上的颁奖. 至于结果如何,反而并不是那么重要了 ...

  8. 刘昕鑫 C# 特性详解

    C# 特性详解 特性(attribute)是被指定给某一声明的一则附加的声明性信息. 在C#中,有一个小的预定义特性集合.在学习如何建立我们自己的定制特性(custom attributes)之前,我 ...

  9. 输出联系变化的数字seq

    主要作用:输出联系变化的数字格式:Seq 分割符号 开始 间隔 结束开始默认是1,间隔默认是1,分隔符默认回车一位是结束,两位首末,三位首间隔末,没有四位,开始可以是负数主要参数:-f 指定格式打印- ...

  10. hadoop-2.7.2-HA安装笔记

    配置方案如图   NN DN ZK ZKFC JN RM NM(任务管理器) HMaster Region Server Node1 1 1 1 1 1 Node2 1 1 1 1 1 1 1 Nod ...