Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox
题目连接:
http://www.codeforces.com/contest/711/problem/E
Description
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of 23 people, there is around 50% chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are 2n days in a year. ZS the Coder wants to interview k people from Udayland, each of them has birthday in one of 2n days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction . He wants to find the values of A and B (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers n and k (1 ≤ n ≤ 1018, 2 ≤ k ≤ 1018), meaning that there are 2n days in a year and that ZS the Coder wants to interview exactly k people.
Output
If the probability of at least two k people having the same birthday in 2n days long year equals (A ≥ 0, B ≥ 1, ), print the A and B in a single line.
Since these numbers may be too large, print them modulo 106 + 3. Note that A and B must be coprime before their remainders modulo 106 + 3 are taken.
Sample Input
3 2
Sample Output
1 8
Hint
题意
有\(2^n\)天,有\(k\)个小朋友,问你这些小朋友在这n天,至少有两个小朋友的生日在同一天的概率是多少,分子分母 mod 1e6+3
题解:
首先容斥,这个很简单。
最难的就是约分,然后我们考虑约分这个玩意儿,他肯定是除以gcd,显然gcd是2的幂,分母的幂显然比分子多,那么我统计一下分子有多少个2 就好了
如果k>=mod,显然答案为0,否则我就暴力。
然后就完了。
特判掉,人比天数多的情况
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e6+3;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
long long gcd(long long a,long long b)
{
if(b==0)return a;
return gcd(b,a%b);
}
int main()
{
long long n,k;
cin>>n>>k;
if(n<62&&k>(1LL<<n))return puts("1 1"),0;
long long num = n;
for(long long i=1;i<62;i++)
num+=(k-1)/(1LL<<i);
long long A=1;
if(k<mod)
{
for(long long i=1;i<=k;i++)A=A*(quickpow(2,n,mod)-i+mod+1)%mod;
A=A*quickpow(quickpow(2,mod-2,mod),num,mod)%mod;
}
else
A=0;
long long B = quickpow(quickpow(2,n,mod),k,mod)*quickpow(quickpow(2,mod-2,mod),num,mod)%mod;
cout<<(B-A+mod)%mod<<" "<<B<<endl;
}
Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学的更多相关文章
- Codeforces Round #369 (Div. 2)E
ZS and The Birthday Paradox 题目:一年有2^n天,有k个人,他们的生日有冲突的概率是多少?答案用最简分数表示,分子分母对1e6+3取模.1 ≤ n ≤ 10^18, 2 ≤ ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) D. Directed Roads 数学
D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) B. Chris and Magic Square 水题
B. Chris and Magic Square 题目连接: http://www.codeforces.com/contest/711/problem/B Description ZS the C ...
- Codeforces Round #369 (Div. 2) A. Bus to Udayland 水题
A. Bus to Udayland 题目连接: http://www.codeforces.com/contest/711/problem/A Description ZS the Coder an ...
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces Round #369 (Div. 2) A. Bus to Udayland (水题)
Bus to Udayland 题目链接: http://codeforces.com/contest/711/problem/A Description ZS the Coder and Chris ...
随机推荐
- ASP.NET实现网站的自动升级
网站的自动升级主要是要实现从一台服务器上下载某些文件到本服务器上,然后对下载下来的文件进行更新等操作. 比如,现在有服务器A,服务器B和客户端C. 作为COM公司开发的产品DIV网站系统被安装到服务器 ...
- 玩转Hook——Android权限管理功能探讨(一)
随着Android设备上的隐私安全问题越来越被公众重视,恶意软件对用户隐私,尤其是对电话.短信等私密信息的威胁日益突出,各大主流安全软件均推出了自己的隐私行为监控功能,在root情况下能有效防止恶意软 ...
- expect 交互 之双引号较长变量
交互双引号较长变量 #!/bin/bash RemoteUser=xuesong12 Ip=192.168.1.2 RemotePasswd=xuesong Cmd="/bin/echo ...
- linux 图形配置网络
命令:setup 打开网络等系统信息的图形配置 yyp复制 vi /etc/sysconfig/network-scripts/ifcfg-eth0 配置网络参数 重启网卡:/etc/init.d/n ...
- mysql学习------权限机制
MySQL服务器通过MySQL权限表来控制用户对数据库的访问,MySQL权限表存放在mysql数据库里,由mysql_install_db脚本初始化.这些MySQL权限表分别user,db,table ...
- 查看nginx | apache | php | tengine | tomcat版本的信息以及如何隐藏版本信息【转】
转自: 查看nginx | apache | php | tengine | tomcat版本的信息以及如何隐藏版本信息 - 追马 - 51CTO技术博客http://lovelace.blog.51 ...
- 『实践』Yalmip+Ipopt+Cplex使用手册
Yalmip+Ipopt+Cplex使用手册 1.软件版本 Cplex 12.6.2,Matlab R2014a,Ipopt 3.12.9,Yalmip 2.Cplex添加方法 官方下载地址: htt ...
- 大数据系列之数据仓库Hive命令使用及JDBC连接
Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...
- device-pixel-radio
移动web开发之像素和DPR 今天看到一个面试题,为iphone6s的自适应,答案是@media(min-device-width:414px) and(max-device-width:736px) ...
- C# 各版本新特性
C# 2.0 泛型(Generics) 泛型是CLR 2.0中引入的最重要的新特性,使得可以在类.方法中对使用的类型进行参数化. 例如,这里定义了一个泛型类: class MyCollection&l ...