根据鸽笼原理,在p次后一定循环,一眼BSGS。
发现他给的函数是个一次函数,一次函数有什么性质呢?f(f(x))还是一次函数,这样就能做了。
首先我们暴力预处理出f(f(f(x)))......sqrt(p)层的f(x)。
然后预处理出前sqrt(p)迭代后的值。
我们可以用exgcd求出如果让f(x)=t,我们需要的x值。
然后我们枚举用多少层迭代sqrt(p)后的f(x)即可。
注意特判一下a==0的情况,因为exgcd无法处理有0的参数。
为什么跑得如此之慢?可能我需要一个unordered_map,然而C++11不能用......

代码:

 #include<cstdio>
#include<cmath>
#include<map>
typedef long long int lli;
using namespace std; lli mod; struct Poly {
lli k,b;
inline Poly inter(const Poly &t) {
return (Poly){t.k*k%mod,(t.b*k%mod+b)%mod};
}
inline lli ite(const lli &x) {
return ( k * x % mod + b ) % mod;
}
}now,trans,sqr; inline lli exgcd(lli a,lli b,lli &x,lli &y) {
if( !b ) {
x = , y = ;
return a;
}
lli ret = exgcd(b,a%b,y,x);
y -= ( a / b ) * x;
return ret;
} inline lli getx(const Poly &p,const lli &t) {
lli x,y,rit;
exgcd(p.k,mod,x,y);
rit = ( t - p.b + mod ) % mod , x = ( x % mod + mod ) % mod;
return x * rit % mod;
} inline lli bsgs(lli a,lli b,lli x,lli t) {
if( !a && !b ) return x == t ? : -;
map<lli,lli> mp;
int sq = ( (double) sqrt(mod) + 0.5 ) + ;
sqr = now = (Poly){,} , trans = (Poly){a,b};
for(int i=;i<=sq;i++) {
if( mp.find(x) == mp.end() ) mp[x] = i;
x = trans.ite(x);
}
for(int i=;i<=sq;i++) sqr = trans.inter(sqr);
for(int i=;i<=sq;i++) {
lli tx = getx(now,t);
if( mp.find(tx) != mp.end() ) return mp[tx] + i * sq;
now = sqr.inter(now);
}
return -;
} int main() {
static int T;
static lli a,b,x,t;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld%lld%lld%lld",&mod,&a,&b,&x,&t);
printf("%lld\n",bsgs(a,b,x,t));
}
return ;
}

Bzoj3122:多项式BSGS的更多相关文章

  1. BSGS[bzoj2242][bzoj3122]

    数论题. 操作一:直接快速幂就好了. 操作二:我用了exgcd,shy和lyz都喜欢欧拉函数...QAQ最后这块还写错了. 对于ax+by=gcd(a,b)的形式,我们可以把他们变成y'x+p'y=1 ...

  2. P5277 【模板】多项式开根(加强版)(bsgs or Cipolla)

    题面 传送门 题解 首先你得会多项式开根->这里 其次你得会解形如 \[x^2\equiv a \pmod{p}\] 的方程 这里有两种方法,一个是\(bsgs\)(这里),还有一种是\(Cip ...

  3. 【BZOJ3122】随机数生成器(BSGS,数论)

    [BZOJ3122]随机数生成器(BSGS,数论) 题面 BZOJ 洛谷 题解 考虑一下递推式 发现一定可以写成一个 \(X_{i+1}=(X_1+c)*a^i-c\)的形式 直接暴力解一下 \(X_ ...

  4. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  5. 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS

    [bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t  n=1 当 a=1  当 a=0 判断b==t /* http: ...

  6. 【BZOJ-3122】随机数生成器 BSGS

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Sta ...

  7. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

  8. 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用

    题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...

  9. [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列

    题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...

随机推荐

  1. SQL记录-PLSQL事务

    PL/SQL事务   数据库事务是一个工作的原子单元,其可以由一个或多个相关的SQL语句组成.所谓的原子性就是数据库的修改所带来的构成事务的SQL语句可以集体被提交,即永久到数据库或从数据库中(撤消) ...

  2. 关于css中a标签的样式

    CSS为一些特殊效果准备了特定的工具,我们称之为“伪类”.其中有几项是我们经常用到的,下面我们就详细介绍一下经常用于定义链接样式的四个伪类,它们分别是: :link :visited :hover : ...

  3. 鼠标样式 cursor 全总结

    本文地址:https://www.cnblogs.com/veinyin/p/10752805.html  最常用的 key  pointer   cursor: key; // 除了pointer, ...

  4. 【转】VTL-vm模板的变量用法

    http://www.cnblogs.com/zengxlf/archive/2009/05/06/1451004.html 加载foot模块页 #parse("foot.vm") ...

  5. Zookeeper笔记之命令行操作

    $ZOOKEEPER_HOME/bin下的zkCli.sh进入命令行界面,使用help可查看支持的所有命令: 一.节点相关操作 create [-s] [-e] path data acl creat ...

  6. Android的layout_weight和weightSum

    先看一下weightSum属性的功能描述:定义weight总和的最大值.如果未指定该值,以所有子视图的layout_weight属性的累加值作为总和的最大值.把weightSum的定义搁在这里,先去看 ...

  7. shell-拷贝指定目录外其他全部目录

    shopt -s extglob if [ ! -d "desdir" ]; then mkdir desdir fi cp -r Oozie/!(.svn*) desdir/

  8. Linux USB Host-Controller的初始化代码框架分析【转】

    转自:http://blog.csdn.net/zkami/article/details/2496770 usb_hcd_omap_probe (const struct hc_driver *dr ...

  9. 【转】Java JUnit 单元测试小结

    原文链接:https://segmentfault.com/a/1190000006731125 测试类型 单元测试(Unit test) 单元测试关注单一的类. 它们存在的目的是检查这个类中的代码是 ...

  10. Vue 实现一个中国地图

    参考:https://www.cnblogs.com/mazey/p/7965698.html 重点:如何引入中国地图js文件,china.js require('echarts/map/js/chi ...