问了数竞的毛毛搞了一番也没太明白,好在代码蛮好写先记下吧。

 #include<bits/stdc++.h>
using namespace std;
const int N=,mod=1e9+;
int n,k,c[N],b[N],a[N],f[N],tmp[N],ans;
inline void qmul(int *x,int *y)
{
for(int i=;i<k*;++i)tmp[i]=;
for(int i=;i<k;++i)
for(int j=;j<k;++j)
tmp[i+j]=(tmp[i+j]+1ll*x[i]*y[j]%mod)%mod;
for(int i=k*-;i>=k;--i)
for(int j=;j<=k;++j)
tmp[i-j]=(tmp[i-j]+1ll*tmp[i]*a[j]%mod)%mod;
for(int i=;i<k;++i)x[i]=tmp[i];
return;
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=k;++i)scanf("%d",&a[i]),a[i]=(a[i]%mod+mod)%mod;
for(int i=;i<k;++i)scanf("%d",&f[i]),f[i]=(f[i]%mod+mod)%mod;
c[]=b[]=;
if(n<k){
printf("%d\n",f[n]);
return ;
}
while(n)
{
if(n&)qmul(b,c);
qmul(c,c);n>>=;
}
for(int i=;i<k;++i)ans=(ans+1ll*f[i]*b[i]%mod)%mod;
printf("%d\n",ans);
return ;
}

BZOJ4161 常系数齐次线性递推的更多相关文章

  1. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  2. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  3. 【Luogu4723】线性递推(常系数齐次线性递推)

    [Luogu4723]线性递推(常系数齐次线性递推) 题面 洛谷 题解 板子题QwQ,注意多项式除法那里每个多项式的系数,调了一天. #include<iostream> #include ...

  4. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  5. 【瞎讲】 Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18)

    [背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并 ...

  6. Re.常系数齐次递推

    前言 嗯   我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么..  可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了  要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...

  7. 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)

    [BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...

  8. 2019牛客暑期多校训练营(第五场)- B generator 1 (齐次线性递推+矩阵快速幂)

    题目链接:https://ac.nowcoder.com/acm/contest/885/B 题意:已知齐次线性式xn=a*xn-1+b*xn-2,已知a,b,x0,x1,求xn,n很大,n<= ...

  9. 线性齐次递推式快速求第n项 学习笔记

    定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...

随机推荐

  1. node.js原生后台进阶(一)

    后台对于我们前端来说可能真的有点陌生,下面我来理清一下思绪吧. 一个基本的后台要求有如下功能: 1.与前端的数据交互 2.操作数据库(增删改查) 3.操作服务器文件(也大概是增删改查) 本次我们先讨论 ...

  2. elasticsearch-dump 迁移es数据 (elasticdump)

    elasticsearch 部分查询语句 # 获取集群的节点列表: curl 'localhost:9200/_cat/nodes?v' # 列出所有索引: curl 'localhost:9200/ ...

  3. CSS的力量:用一个DIV画图

    这些图片都是用一个DIV绘制出来的,其实原理并不复杂. 这些图片都是由CSS绘制出来的,通过background-image叠加实现, 如蘑菇头的实现,通过 radial-gradient 径向渐变  ...

  4. HDU 2049 不容易系列之(4)——考新郎 (错排+组合)

    题目链接. Problem Description 国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体 ...

  5. MFC小型工具通用界面框架CLIST控件+右键菜单功能

    MFC-小型工具通用界面框架 0x1 场景 由于工作需要我会写代码开发工具给客户或者同事用.代码都能实现,但写个黑乎乎的命令行工具给别人用确实显得不够专业,用别人写好的成型工具又担心有后门. 所以掌握 ...

  6. jquery-easyui:格式化列

    主框架页面: 在主界面区会加载西区菜单点击的URL内容. <!DOCTYPE html> <html> <head> <meta charset=" ...

  7. ASP.NET中Request.ApplicationPath、Request.FilePath、Request.Path、.Request.MapPath、

    1.Request.ApplicationPath->当前应用的目录    Jsp中, ApplicationPath指的是当前的application(应用程序)的目录,ASP.NET中也是这 ...

  8. cat集成项目所遇到的一些坑

    第一个问题:(jar包依赖冲突) 启动报错,直接贴log zhengxin-third-shanghai-cis [2017-08-21 14:17:49] 56231 WARN [main] - A ...

  9. libsvm的使用

    参考:http://www.cnblogs.com/GuoJiaSheng/p/4480497.html http://www.cnblogs.com/tornadomeet/archive/2012 ...

  10. Java web项目使用webSocket

    前端: <%@ page language="java" import="java.util.*" pageEncoding="UTF-8&qu ...