这题就是

LightOJ - 1236

解析去看这个把https://www.cnblogs.com/WTSRUVF/p/9185140.html

贴代码了;

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define maxn 10000900
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int LL_INF = 0x7fffffffffffffff,INF = 0x3f3f3f3f;
LL primes[maxn/];
bool vis[maxn];
LL ans = ;
void init()
{
mem(vis,);
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
init();
LL n;
while(cin>> n && n)
{
LL res = , cnt = ;
LL temp = n;
for(LL i=; i<ans && primes[i] * primes[i] <= n; i++)
{
LL cnt2 = ;
while(n % primes[i] == )
{
n /= primes[i];
cnt2++;
}
if(cnt2 > )
{
res *= (*cnt2 + );
}
}
if(n > )
{
res *= ;
}
printf("%lld %lld\n",temp,res/+);
}
return ;
}

LCM Cardinality UVA - 10892(算术基本定理)的更多相关文章

  1. Pairs Forming LCM LightOJ - 1236 (算术基本定理)

    题意: 就是求1-n中有多少对i 和 j 的最小公倍数为n  (i <= j) 解析: 而这题,我们假设( a , b ) = n ,那么: n=pk11pk22⋯pkss, a=pd11pd2 ...

  2. UVA 10892 - LCM Cardinality

    Problem F LCM Cardinality Input: Standard Input Output: Standard Output Time Limit: 2 Seconds A pair ...

  3. UVA 10892 LCM Cardinality 数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  4. UVA 10892 LCM Cardinality(数论 质因数分解)

    LCM Cardinality Input: Standard Input Output: Standard Output Time Limit: 2 Seconds A pair of number ...

  5. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  6. hdu4479 (数学题)(算术基本定理)

    题目大意 给定一个三元组\((x,y,z)\)的\(gcd\)和\(lcm\),求可能的三元组的数量是多少,其中三元组是的具有顺序的 其中\(gcd\)和\(lcm\)都是32位整数范围之内 由算术基 ...

  7. LCM Cardinality 暴力

    LCM Cardinality Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit St ...

  8. Aladdin and the Flying Carpet LightOJ - 1341 (素数打表 + 算术基本定理)

    题意: 就是求a的因数中大于b的有几对 解析: 先把素数打表 运用算术基本定理 求出a的所有因数的个数 然后减去小于b的因数的个数 代码如下: #include <iostream> #i ...

  9. LightOJ - 1341 Aladdin and the Flying Carpet (算术基本定理)

    题意: 就是....求a的所有大于b的因子有多少对 算术基本定理求 所有因子 阿欧...偷张图. 注意范围 就好  ..... 解析: 在1 -1012的范围内求大于b的所有a的因子的对数(有几对) ...

随机推荐

  1. TCP和UDP套接字编程 (java实现)

    在了解网络编程之前,我们先了解一下什么叫套接字 套接字即指同一台主机内应用层和运输层之间的接口 由于这个套接字是建立在网络上建立网络应用的可编程接口 因此也将套接字称为应用程序和网络之间的应用程序编程 ...

  2. 6-51单片机ESP8266学习-AT指令(8266TCP服务器--做自己的AndroidTCP客户端发信息给单片机控制小灯的亮灭)

    http://www.cnblogs.com/yangfengwu/p/8776712.html 先把源码和资料链接放到这里 链接: https://pan.baidu.com/s/1jpHZjW_7 ...

  3. python安装opencv

    执行命令:pip install opencv-python即可

  4. 大数据入门第十六天——流式计算之storm详解(一)入门与集群安装

    一.概述 今天起就正式进入了流式计算.这里先解释一下流式计算的概念 离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据 ...

  5. QQ 的一些URI 协议命令

    //System.Diagnostics.Process.Start(@"C:\Program Files\Tencent\TIM\Bin\Timwp.exe", "te ...

  6. 20155218《网络对抗》Exp2 后门原理与实践

    20155218<网络对抗>Exp2 后门原理与实践 常用后门工具实践 1.Windows获得Linux Shell: 在Windows下,先使用ipconfig指令查看本机IP,使用nc ...

  7. 20155238 《JAVA程序设计》实验三(敏捷开发与XP实践)实验报告

    实验内容 敏捷开发与XP实践 XP基础 XP核心实践 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2.完成实 ...

  8. 【第三课】Centos 7.x系统安装和网络配置以及远程密钥登录

    目录 一.安装CentOS 7.3 二.配置网络 1.使用dhclient命令自动获取ip地址 2.使用ip addr或ifconfig命令查看网卡信息 3.使用route命令查看路由信息 4.通过修 ...

  9. linux下的yum命令详细介绍

    yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...

  10. C# Language Specification 5.0 (翻译)第四章 类型

    C# 语言的类型分为两大类:值类型(value type)和引用类型(reference type),而它们又都同时具有至少一个类型形参的泛型类型(generic type).类型形参(type pa ...