UVA12888 【Count LCM】(莫比乌斯反演)
题意:求\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\)
\(assume\ n<m\)
\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|gcd(i,j)}\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i,x|j}\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[x|i,x|j]\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n/x}\sum_{j=1}^{m/x}\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\lfloor\frac nx\rfloor\lfloor\frac mx\rfloor\mu(x)\)
那么我们\(O(n)\)筛出\(\mu(x)\)函数的前缀和,再用整除分块优化,最终时间复杂度为\(O(T\sqrt{n})\)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1000000+10;
ll n,m,prim[maxn],vis[maxn],mu[maxn],cnt,ans;
void getmu(ll n){
register ll i,j;
mu[1]=1;
for(i=2;i<=n;i++){
if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
for(j=1;i*prim[j]<=n&&j<=cnt;j++){
vis[i*prim[j]]=1;
if(i%prim[j]==0) break;
mu[i*prim[j]]=-mu[i];
}
}
for(i=1;i<=n;i++) mu[i]+=mu[i-1];
}
int main()
{
getmu(1000000);
register ll T,l,r;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
ans=0;
for(l=1;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(n/l)*(m/l)*(mu[r]-mu[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}
UVA12888 【Count LCM】(莫比乌斯反演)的更多相关文章
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
- BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
- hdu 5382 GCD?LCM! - 莫比乌斯反演
题目传送门 传送门I 传送门II 题目大意 设$F(n) = \sum_{i = 1}^{n}\sum_{j = 1}^{n}\left [ [i, j] + (i, j) \geqslant n \ ...
- lcm的和(莫比乌斯反演)
马上开学了,加一个操作系统和数据库标签 不玩了,求1-n和1-m的lcm(i,j)和 首先想到把lcm(i,j)转化为i * j / gcd(i, j) 然后gcd,要素察觉,开始枚举d使得gcd(i ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- hdu1695(莫比乌斯反演)
传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...
- 【BZOJ2154】Crash的数字表格(莫比乌斯反演)
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...
随机推荐
- Apache Prefork、Worker和Event三种MPM分析
三种MPM介绍 Apache 2.X 支持插入式并行处理模块,称为多路处理模块(MPM).在编译apache时必须选择也只能选择一个MPM,对类UNIX系统,有几个不同的MPM可供选择,它们会影响到 ...
- KM匹配板子
/* gyt Live up to every day */ #include<cstdio> #include<cmath> #include<iostream> ...
- 【fiddler】抓取https数据失败,全部显示“Tunnel to......443”
这个问题是昨天下午就一直存在的,知道今天上午才解决,很感谢“韬光养晦”. 问题描述: 按照网络上的教程,设置fiddler开启解密https的选项,同时fiddler的证书也是安装到系统中,但是抓取 ...
- 牛客训练二:处女座的签到题(STL+精度+三角形求面积公式)
题目链接:传送门 知识点: (1)三个点,三角形求面积公式 (2)精度问题: double 15-16位(参考文章) float 6-7位 long long 约20位 int 约10位 unsign ...
- Multiplexer
definition a device that selects one of several analog or digital input signals and forwards the se ...
- bootstrap 后台模板
http://wangye0119-html1.demo.smallseashell.com/index.html
- C++STL 迭代器
迭代器类别: 输入迭代器(只读迭代器).输出迭代器(只写迭代器).正向迭代器.双向迭代器.随机访问迭代器 逆向遍历 for(vector<int>::reverse_iterator ri ...
- JMeter测试工具.jmx文件详解
摘要:了解.jmx文件格式类型,对jmeter二次开发与拓展有很大的帮助,当然也可以利用python对其进行一些处理(生成一些测试用例,对jmx文件进行 ”增删改查“). 一个完整用例的.jmx文件基 ...
- 【终极答案】搭建selenium3.11 +Firefox+python3.6自动化UI测试环境踩的坑
1 运行之后,出现如下报错 Selenium.common.exceptions.WebDriverException: Message: 'geckodriver' executable needs ...
- gj13 asyncio并发编程
13.1 事件循环 asyncio 包含各种特定系统实现的模块化事件循环 传输和协议抽象 对TCP.UDP.SSL.子进程.延时调用以及其他的具体支持 模仿futures模块但适用于事件循环使用的Fu ...