1. Linux内核链表的位置及依赖

(1)位置:{linux-2.6.39}\\include\linux\list.h

(2)依赖

  ①#include<linux\types.h>

  ②#include<linux\stddef.h>

  ③#include<linux\poison.h>

  ④#include<linux\prefetch.h>

2. 移植及注意事项

(1)清除文件间的依赖:剥离依赖文件中与链表实现相关的代码

(2)清除与平台相关代码(GNU C)

  ①({}) ②typeof ③__builtin_prefetch ④static inline

【编程实验】Linux内核源码的移植

//linuxlist.h

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H //#include <linux/types.h>
//#include <linux/stddef.h>
//#include <linux/poison.h>
//#include <linux/prefetch.h> /*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/ #ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif #ifndef container_of
#define container_of(ptr, type, member) ((type *)((char *)ptr - offsetof(type,member)))
#endif #define prefetch(x) ((void)x)
#define LIST_POISON1 (NULL)
#define LIST_POISON2 (NULL) struct list_head{
struct list_head *next, *prev;
}; struct hlist_node{
struct hlist_node *next, **pprev;
}; struct hlist_head{
struct hlist_node *first;
}; #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name) static void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
} /*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static void __list_add(struct list_head *node,
struct list_head *prev,
struct list_head *next)
{
next->prev = node;
node->next = next;
node->prev = prev;
prev->next = node;
}
#else
extern void __list_add(struct list_head *node,
struct list_head *prev,
struct list_head *next);
#endif /**
* list_add - add a new entry
* @node: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static void list_add(struct list_head *node, struct list_head *head)
{
__list_add(node, head, head->next);
} /**
* list_add_tail - add a new entry
* @node: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static void list_add_tail(struct list_head *node, struct list_head *head)
{
__list_add(node, head->prev, head);
} /*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
} /**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
} static void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif /**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @node : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static void list_replace(struct list_head *old,
struct list_head *node)
{
node->next = old->next;
node->next->prev = node;
node->prev = old->prev;
node->prev->next = node;
} static void list_replace_init(struct list_head *old,
struct list_head *node)
{
list_replace(old, node);
INIT_LIST_HEAD(old);
} /**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
} /**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
} /**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
} /**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
} /**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static int list_empty(const struct list_head *head)
{
return head->next == head;
} /**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
} /**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static void list_rotate_left(struct list_head *head)
{
struct list_head *first; if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
} /**
* list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
} static void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
} /**
* list_cut_position - cut a list into two
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
* and if so we won't cut the list
*
* This helper moves the initial part of @head, up to and
* including @entry, from @head to @list. You should
* pass on @entry an element you know is on @head. @list
* should be an empty list or a list you do not care about
* losing its data.
*
*/
static void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
} static void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev; first->prev = prev;
prev->next = first; last->next = next;
next->prev = last;
} /**
* list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
} /**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
} /**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
} /**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
} /**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member) /**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member) /**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next) /**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* This variant differs from list_for_each() in that it's the
* simplest possible list iteration code, no prefetching is done.
* Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next) /**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
pos = pos->prev) /**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next) /**
* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
prefetch(pos->prev), pos != (head); \
pos = n, n = pos->prev) /**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member)) /**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member)) /**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member)) /**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member)) /**
* list_for_each_entry_continue_reverse - iterate backwards from the given point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Start to iterate over list of given type backwards, continuing after
* the current position.
*/
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member)) /**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member)) /**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member)) /**
* list_for_each_entry_safe_continue - continue list iteration safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member)) /**
* list_for_each_entry_safe_from - iterate over list from current point safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member)) /**
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member)) /**
* list_safe_reset_next - reset a stale list_for_each_entry_safe loop
* @pos: the loop cursor used in the list_for_each_entry_safe loop
* @n: temporary storage used in list_for_each_entry_safe
* @member: the name of the list_struct within the struct.
*
* list_safe_reset_next is not safe to use in general if the list may be
* modified concurrently (eg. the lock is dropped in the loop body). An
* exception to this is if the cursor element (pos) is pinned in the list,
* and list_safe_reset_next is called after re-taking the lock and before
* completing the current iteration of the loop body.
*/
#define list_safe_reset_next(pos, n, member) \
n = list_entry(pos->member.next, typeof(*pos), member) /*
* Double linked lists with a single pointer list head.
* Mostly useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access the tail in O(1).
*/ #define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
} static int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
} static int hlist_empty(const struct hlist_head *h)
{
return !h->first;
} static void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
} static void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
} static void hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
} static void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
} /* next must be != NULL */
static void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
} static void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next; if(next->next)
next->next->pprev = &next->next;
} /* after that we'll appear to be on some hlist and hlist_del will work */
static void hlist_add_fake(struct hlist_node *n)
{
n->pprev = &n->next;
} /*
* Move a list from one list head to another. Fixup the pprev
* reference of the first entry if it exists.
*/
static void hlist_move_list(struct hlist_head *old,
struct hlist_head *node)
{
node->first = old->first;
if (node->first)
node->first->pprev = &node->first;
old->first = NULL;
} #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \
for (pos = (head)->first; pos && ({ prefetch(pos->next); ; }); \
pos = pos->next) #define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; ; }); \
pos = n) /**
* hlist_for_each_entry - iterate over list of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
pos && ({ prefetch(pos->next); ;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = pos->next) /**
* hlist_for_each_entry_continue - iterate over a hlist continuing after current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
pos && ({ prefetch(pos->next); ;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = pos->next) /**
* hlist_for_each_entry_from - iterate over a hlist continuing from current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos && ({ prefetch(pos->next); ;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = pos->next) /**
* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @n: another &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
for (pos = (head)->first; \
pos && ({ n = pos->next; ; }) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = n) #endif

3 .Linux内核链表的实现

(1)带头节点的双向循环链表,且头节点为表中成员

(2)头结点的next指针指向首结点

(3)头结点的prev指针指向尾结点

4. Linux内核链表的结点定义

(1)结点定义

struct list_head{
struct list_head *next, *prev; //数据域不见了,放在哪里?
};

(2)使用链表时需自定义链表结点

struct Node
{
struct list_head head;
Type1 value1; //数据域
Type2 value2;
//…
};

5. Linux内核链表的操作

(1)创建和初始化

struct Node
{
struct list_head head; //指针域
int value; //数据域
}; int main(void)
{
//创建头结点
struct Node n = {};
struct list_head* list = (struct list_head*)&n; INIT_LIST_HEAD(list); //初始化
//...
}

(2)插入操作

  ①在链表头部插入:list_add(new, head)

  ②在链表尾部插入:list_add_tail(new, head);

(3)删除操作

__list_del(*prev, *next)
{
next->prev = prev;
prev->next = next;
} list_del(*entry)
{
__list_del(entry-prev, entry-next);
entry->next = LIST_POISON1; //null
entry->prev = LIST_POISON2; //null
}

(4)遍历操作

  ①正向遍历:list_for_each(pos, head);

  ②逆向遍历:list_for_each_prev(pos, head)

#define list_for_each(pos, head)    \
for(pos = (head)->next; prefetch(pos->next), pos !=(head); \
pos = pos->next) #define list_for_each_prev(pos, head) \
for(pos = (head)->prev; prefetch(pos->prev), pos !=(head); \
pos = pos->prev)

【编程实验】Linux内核链表的使用

//main.c

#include <stdio.h>
#include <malloc.h>
#include "LinuxList.h" void demo1()
{
//自定义结点类型(含数据域)
struct Node
{
struct list_head head; //指针域放前面
int value;
}; struct Node node={};
struct list_head* list = (struct list_head*)&node;
struct list_head* slider = NULL;
int i = ; //初始化链表,形成循环链表
INIT_LIST_HEAD(list); printf("Insert begin ...\n"); //插入4个元素
for(i=; i<; i++){
struct Node* n = (struct Node*)malloc(sizeof(struct Node)); n->value = i; list_add_tail((struct list_head*)n, list);
} //遍历链表
list_for_each(slider, list){
printf("%d\n", ((struct Node*)slider)->value);
} printf("Insert end ...\n"); //删除值为3的元素
printf("Delete begin ...\n");
list_for_each(slider, list){
if(((struct Node*)slider)->value == ){
list_del(slider);
free(slider);
break;
}
} list_for_each(slider, list){
printf("%d\n", ((struct Node*)slider)->value);
} printf("Delete end ...\n");
} //结点类型中指针域放最后
void demo2()
{
//自定义结点类型(含数据域)
struct Node
{
int value;
struct list_head head; //指针域放后面 }; struct Node node={};
struct list_head* list = (struct list_head*)&node;
struct list_head* slider = NULL;
int i = ; //初始化链表,形成循环链表
INIT_LIST_HEAD(list); printf("Insert begin ...\n"); //插入4个元素
for(i=; i<; i++){
struct Node* n = (struct Node*)malloc(sizeof(struct Node)); n->value = i; list_add_tail(&n->head, list);
} //遍历链表(注意,需要用list_entry宏来获取节点的地址)
list_for_each(slider, list){
printf("%d\n", list_entry(slider, struct Node, head)->value);
} printf("Insert end ...\n"); //删除值为3的元素
printf("Delete begin ...\n");
list_for_each(slider, list){
if(list_entry(slider, struct Node, head)->value == ){
list_del(slider);
free(slider);
break;
}
} list_for_each(slider, list){
printf("%d\n", list_entry(slider, struct Node, head)->value);
} printf("Delete end ...\n");
}
int main()
{
demo2();
return ;
}

6. 小结

(1)Linux内核链表移植时需要剔除依赖以及平台相关代码

(2)Linux内核链表是带头结点的双向循环链表

(3)使用Linux内核链表时需要自定义链表结点

  ①将struct list_head作为结点结构体的第一个成员或最后一个成员

  ②struct list_head作为最后一个成员时,需要使用list_entry

  ③list_entry的定义中使用了container_of

第32课 Linux内核链表剖析的更多相关文章

  1. 第三十二课 linux内核链表剖析

    __builtin_prefetch是gcc扩展的,用来提高访问效率,需要硬件的支持. 在标准C语言中是不允许static inline联合使用的. 删除依赖的头文件,将相应的结构拷贝到LinuxLi ...

  2. linux内核链表剖析

    1.移植linux内核链表,使其适用于非GNU编译器 2.分析linux内核中链表的基本实现 移植时的注意事项 清除文件间的依赖 剥离依赖文件中与链表实现相关的代码 清除平台相关的代码(GNU C) ...

  3. 数据结构开发(10):Linux内核链表

    0.目录 1.老生常谈的两个宏(Linux) 1.1 offsetof 1.2 container_of 2.Linux内核链表剖析 3.小结 1.老生常谈的两个宏(Linux) Linux 内核中常 ...

  4. Linux 内核链表实现和使用(一阴一阳,太极生两仪~)

    0. 概述 学习使用一下 linux 内核链表,在实际开发中我们可以高效的使用该链表帮我们做点事, 链表是Linux 内核中常用的最普通的内建数据结构,链表是一种存放和操作可变数据元 素(常称为节点) ...

  5. 链表的艺术——Linux内核链表分析

    引言: 链表是数据结构中的重要成员之中的一个.因为其结构简单且动态插入.删除节点用时少的长处,链表在开发中的应用场景许多.仅次于数组(越简单应用越广). 可是.正如其长处一样,链表的缺点也是显而易见的 ...

  6. Linux内核链表——看这一篇文章就够了

    本文从最基本的内核链表出发,引出初始化INIT_LIST_HEAD函数,然后介绍list_add,通过改变链表位置的问题引出list_for_each函数,然后为了获取容器结构地址,引出offseto ...

  7. Linux内核链表深度分析

    链表简介:链表是一种常用的数据结构,它通过指针将一系列数据节点连接成一条数据链.相对于数组,链表具有更好的动态性,建立链表时无需预先知道数据总量,可以随机分配空间,可以高效地在链表中的任意位置实时插入 ...

  8. C语言 Linux内核链表(企业级链表)

    //Linux内核链表(企业级链表) #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> ...

  9. 深入分析 Linux 内核链表--转

    引用地址:http://www.ibm.com/developerworks/cn/linux/kernel/l-chain/index.html 一. 链表数据结构简介 链表是一种常用的组织有序数据 ...

随机推荐

  1. 互换元素(swap,swap_ranges)

    swap template <class Assignable> void swap(Assignable &a,Assignable &b); iter_swap tem ...

  2. 一个简单的web.py论坛

    一.概述 forum是一个简单的web.py论坛,后端采用Python+web.py+MySQL,前端采用HTML+CSS+JavaScript+jQuery+RequireJS. 该论坛的主要功能包 ...

  3. taro 事件处理

    https://nervjs.github.io/taro/docs/event.html Taro 元素的事件处理和 DOM 元素的很相似.但是有一点语法上的不同: Taro 事件绑定属性的命名采用 ...

  4. python获取代理IP并测试是否可用

    # coding: utf-8 import urllib2 import re import time def getDL(page): url = 'http://www.xicidaili.co ...

  5. 【java】JDK与JRE的区别

    JRE和JDK区别: JDK和JRE提供的服务包: JDK是整个JAVA的核心,JDK包含如下核心组件: ·javac – 编译器 ·jar – 打包工具 ·javadoc – 文档生成器 ·jdb ...

  6. android 逆向

    用到两个工具 :dex2jar和jd-gui 1,重命名ContactManager.apk为ContactManager.zip并解压得到文件classes.dex: 2,解压dex2jar-0.0 ...

  7. Composer的学习

    来自http://blog.sina.com.cn/s/blog_6262a50e0101b5ut.html 简介 composer是PHP中的一个依赖关系管理工具.只要(按指定格式)声明项目所依赖的 ...

  8. 为什么.net 4.6.1装了却没看到

    今天在做SignalR网站,需要在发布到的云服务器安装.net4.6.1 从网上下载了安装包,安装完之后,到Windows文件夹的 Microsoft.NET文件夹中却找不到4.6.1的文件夹. 云服 ...

  9. AS3 内存基础

    1:获取一个对象的字节数: var str:String="ddd啊"; var byte:ByteArray=new ByteArray(); byte.writeMultiBy ...

  10. SpringMVC---400错误The request sent by the client was syntactically incorrect ()

    在SpringMVC中使用@RequestBody和@ModelAttribute注解时遇到了很多问题,现记录下来. @ModelAttribute这个注解主要是将客户端请求的参数绑定参数到一个对象上 ...