马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动

马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作

马士兵hadoop第三课:java开发hdfs

马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解

马士兵hadoop第五课:java开发Map/Reduce

配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)
把HADOOP_HOME/bin加到PATH环境变量(非必要,只是为了方便)
如果是在windows下开发,需要添加windows的库文件
把盘中共享的bin目录覆盖HADOOP_HOME/bin
如果还是不行,把其中的hadoop.dll复制到c:\windows\system32目录下,可能需要重启机器
建立新项目,引入hadoop需要的jar文件

代码WordMapper:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class WordMapper extends Mapper<LongWritable,Text, Text, IntWritable> { @Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for(String word : words) {
context.write(new Text(word), new IntWritable(1));
}
} }

代码WordReducer:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordReducer extends Reducer<Text, IntWritable, Text, LongWritable> { @Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
long count = 0;
for(IntWritable v : values) {
count += v.get();
}
context.write(key, new LongWritable(count));
} }

代码Test:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Test {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setMapperClass(WordMapper.class);
job.setReducerClass(WordReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); FileInputFormat.setInputPaths(job, "c:/bigdata/hadoop/test/test.txt");
FileOutputFormat.setOutputPath(job, new Path("c:/bigdata/hadoop/test/out/")); job.waitForCompletion(true);
}
}

把hdfs中的文件拉到本地来运行

FileInputFormat.setInputPaths(job, "hdfs://master:9000/wcinput/");
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wcoutput2/"));

注意这里是把hdfs文件拉到本地来运行,如果观察输出的话会观察到jobID带有local字样
同时这样的运行方式是不需要yarn的(自己停掉yarn服务做实验)
在远程服务器执行

conf.set("fs.defaultFS", "hdfs://master:9000/");

conf.set("mapreduce.job.jar", "target/wc.jar");
conf.set("mapreduce.framework.name", "yarn");
conf.set("yarn.resourcemanager.hostname", "master");
conf.set("mapreduce.app-submission.cross-platform", "true"); FileInputFormat.setInputPaths(job, "/wcinput/");
FileOutputFormat.setOutputPath(job, new Path("/wcoutput3/"));

如果遇到权限问题,配置执行时的虚拟机参数-DHADOOP_USER_NAME=root
也可以将hadoop的四个配置文件拿下来放到src根目录下,就不需要进行手工配置了,默认到classpath目录寻找
或者将配置文件放到别的地方,使用conf.addResource(.class.getClassLoader.getResourceAsStream)方式添加,不推荐使用绝对路径的方式

马士兵hadoop第五课:java开发Map/Reduce的更多相关文章

  1. 马士兵hadoop第五课:java开发Map/Reduce(转)

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  2. 马士兵hadoop第三课:java开发hdfs

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  3. 马士兵hadoop第三课:java开发hdfs(转)

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  4. 马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  5. 马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解(转)

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  6. 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  7. 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作(转)

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  8. 马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动(转)

    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第 ...

  9. hadoop学习WordCount+Block+Split+Shuffle+Map+Reduce技术详解

    转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Spl ...

随机推荐

  1. 如何将U盘转化成NTFS格式

    拷贝数据到U盘,出现 出现错误0x80070052:无法创建目录或文件 然后发现应该是U盘为fat32格式的,感觉应该是这个问题 方法一:如果你是新买的U盘,或者U盘内数据已经备份到电脑,可以使用该条 ...

  2. NAT地址转换

    2017年1月12日, 星期四 NAT地址转换 SNAT:源地址转换  DNAT:目标地址转换   null

  3. Spring Cloud(十二)声名式服务调用:Feign 的使用(下)

    前言 本文是对上一篇博文的扩充,很多平时用不到的特性就开始简略一写,Spring Cloud各版本之间的差距很大的,用不到的可能下一个版本就被kill掉了.由于笔者写本文开始的时候误解了Feign的继 ...

  4. Oozie 生成JMS消息并向 JMS Provider发送消息过程分析

    一,涉及到的工程 从官网下载源码,mvn 编译成 Eclipse工程文件:

  5. html5 canvas创建阴影

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. [原]JUnit 自定义扩展思路

    1. 理解Annotation,http://www.cnblogs.com/mandroid/archive/2011/07/18/2109829.html 2. JUNIT整体执行过程分析,htt ...

  7. 第12月第2天 uiscrollview _adjustContentOffsetIfNecessary 圆角

    1. uiscrollview在调用setFrame,setBounds等方法的时候会默认调用稀有api: _adjustContentOffsetIfNecessary 这个方法会改变当前的cont ...

  8. linux驱动---等待队列、工作队列、Tasklets【转】

    转自:https://blog.csdn.net/ezimu/article/details/54851148 概述: 等待队列.工作队列.Tasklet都是linux驱动很重要的API,下面主要从用 ...

  9. Flask页面模板化代码片段

    文中展示了Flask官网的Tutorial示例中用到的模板化代码片段,以备查阅. base.html: {% block title %}{% endblock %} {% if g.user %} ...

  10. oracle中循环读出一个表的信息插入到另外一个表中

    declare cursor TAGENTMENUd is select * from TAGENTMENU where 1=1; -- 获取游标begin --遍历查询出的表 (注意 tn是整条记录 ...