论文假设和单目标模型

这部分想讲一下Semantic Localization Via the Matrix Permanent这篇文章的一些假设。

待求解的问题可以描述为

假设从姿态\(x\)看到的物体(路标点)集合为\(Y(x)={y_1,...,y_n}\),观测为\(Z={z_1,...,z_m}\)。求后验概率\(p(Z|Y,x)\)。

这里引入数据关联\(\pi\)表示从物体到测量的一个对应关系,其中即包含正确的配对,也包含错误的配对和缺失的配对。

一些假设

作者对目标检测和数据关联做了一些基本的假设。

  • 每个测量最多对应着一个物体。
  • 每个物体\(y\)要么以概率\(p_d(y,x)\)(通过目标检测算法)得到一个测量,要么以\(1-p_d(y,x)\)的概率没有检测到物体。
  • 检测出假阳性(false-positive)的过程(作为一个随机过程)在时间线上符合泊松分布(均值为\(\lambda\)),在空间上符合概率分布\(p_\kappa(z)\)。
  • 假阳性过程和目标检测过程是相互独立的,并且所有检测都独立于机器人和物体的状态(state)。
  • 每两个测量都独立于\(x,Y\)和数据关联\(\pi\)。

单目标的观测模型

单目标观测的概率模型包含三个部分。

  • 检测率模型
  • 观测的似然函数
  • 误检测率模型

检测率模型

检测率模型度量了在\(x\)处检测到目标\(y\)的概率分布\(p_d(y,x)\)。这里作者假设检测率在FOV中某个点达到最高值,并以指数下降的速率向四周扩散。

\[p_d(y,x)=p_0\exp(-\frac{\left\vert\mu_0-\parallel y-x\parallel\right\vert}{\sigma_0}), \text{ if } y\in\text{FOV}(x)\]

式中的参数可以通过训练模型估计。当然,这个概率可以根据经验自己调整。

观测的似然函数

观测模型是指\(p(z|y,x)\),即在姿态\(x\)处检测到目标\(y\)时,观测\(z=(class, score, bearing)=(c,s,b)\)的概率分布。根据链式法则,
\[p(z|y,x)=p(s|c,s,b,y,x)p(c|b,y,x)p(b|y,x)=p_s(s|c,y)p_c(c|y)p_b(b|y,x)\]

其中,\(p_c\)是检测模型的confusion matrix,\(p_s\)是检测得分的似然函数,最后一个可以从训练检测模型的过程中得到。

误检测率模型

\(p_{\kappa}(z)\)的分布可通过类似观测的似然函数的方法得到。或者假设为均匀分布。
\[p_{\kappa}(z) = \frac{1}{\parallel S \parallel \cdot \parallel C \parallel \cdot \parallel B \parallel}\]

语义SLAM的数据关联和语义定位(二)Semantic Localization Via the Matrix Permanent的更多相关文章

  1. 语义SLAM的数据关联和语义定位(一)

    语义SLAM和多传感器融合是自动驾驶建图和定位部分比较热门的两种技术.语义SLAM中,语义信息的数据关联相较于特征点的数据关联有所不同.我们一般用特征描述子的相似性来匹配和关联不同图像中的特征点.特征 ...

  2. 语义SLAM的数据关联和语义定位(四)多目标测量概率模型

    多目标模型 这部分想讲一下Semantic Localization Via the Matrix Permanent这篇文章的多目标测量概率模型.考虑到实际情况中,目标检测算法从单张图像中可能检测出 ...

  3. 语义SLAM的数据关联和语义定位(三)

    与现有方法的异同 特征点SLAM中的数据关联 先回忆一下特征点SLAM中,我们是如何处理数据关联的.下面以ORBSLAM为例. 在初始化部分,我们通过特征描述子的相似性,建立两帧之间的特征点关联,然后 ...

  4. 语义slam用于高精地图和高精定位的一些想法

    最近一直在考虑语义slam在自动驾驶和辅助驾驶中的用法,研究了一下视觉为主的高精度地图+高精定位的模式,特别是mobileye的REM. 秉承先建图再定位的思路,在服务器端(云端)建图,在车端定位. ...

  5. 分享| 语义SLAM的未来与思考(泡泡机器人)

    相比典型的点云地图,语义地图能够很好的表示出机器人到的地方是什么,机器人“看”到的东西是什么.比如进入到一个房间,点云地图中,机器人并不能识别显示出来的一块块的点云到底是什么,但是语义地图的构建可以分 ...

  6. 从5个经典工作开始看语义SLAM

    本文试图概括Semantic SLAM的主要思路和近年工作,⻓期更新.但因水平有限,若有错漏,感谢指正. (更好的公式显示效果,可关注文章底部的公众号) Semantic SLAM 简介 至今为止,主 ...

  7. 最近一年语义SLAM有哪些代表性工作?

    点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM ...

  8. 语义SLAM研究现状总结

    博客转载自:https://blog.csdn.net/xiaoxiaowenqiang/article/details/81051010 原文标题:深度学习结合SLAM 语义slam 语义分割 端到 ...

  9. 三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

    前言: 在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题和三维重建:SLAM的粒度和工程化问题 .大规模三维场景重建的尺度增大,因此相对于整个重 ...

随机推荐

  1. mxonline 总结

    课程相关 课程列表 课程的剪接 课程详情 课程章节 课程关联的授课机构,课程关联的授课教师 热门课程 相关课程推荐 课程留言 需要登录 若未登录,返回到登录页面 留言失败反馈信息 留言成功,异步刷新页 ...

  2. dubbo源码阅读之SPI

    dubbo SPI SPI,全程Service Provider interface, java中的一种借口扩展机制,将借口的实现类注明在配置文件中,程序在运行时通过扫描这些配置文件从而获取全部的实现 ...

  3. oracle 闪回、归档的设置建议

    闪回与归档的相关测试 参考博客:http://www.cnblogs.com/hellojesson/p/7050097.html 数据库在归档模式下的管理 参考博客:http://www.cnblo ...

  4. PHP的语言构造器

    isset和empty看起来像是函数,我们也经常把它当作函数一样使用,但是实际上,它们是语言构造器. php中的语言构造器就相当于C中的预定义宏的意思,它属于php语言内部定义的关键词,不可以被修改, ...

  5. Javac中对import关键字进行的处理

    参考文章: (1)关于类的符号输入过程第二篇 ImportScope中存储的为ImportEntry,继承了Scope.Entry类并且多定义了个origin属性,也就是符号的最终来源.除此之外还对g ...

  6. Web Components实践开发Tab组件

    本文是对web components的一次实践,最终目的是做出一个tab组件,本文涉及Custom Elements(自定义元素).HTML Imports(HTML导入).HTML Template ...

  7. Async异步编程入门示例

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  8. linux 初始化工作环境

    #!/bin/sh # # init workspace # /bin/svnserve -d -r /home/oracle/projects --listen-port= su - oracle ...

  9. python的Web框架,Django模板变量,过滤器和静态文件引入

    HTML模板的路径查找 在setting中设置查找路径: #默认的查找在此处填写,优先级最高,为在manage.py的同级路径中,添加(常规是template)文件夹,在(template)文件夹中配 ...

  10. POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

    题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given fou ...