题目大意:给你一个长度为$n$的序列$a$,我们定义$f_i$表示序列$a$前i项一次进行按位与运算后的值。

我们认为一个序列的价值为$\sum_{i=1}^{n}f_i$,现在你要重新排列序列$a$,使得序列的价值最大。

数据范围,$1≤a_i,n≤10^6$

我们考虑$dp$。

不难发现,若序列中存在数$x$和数$y$,满足$x\&y==x$,那么将$y$放在$x$前面显然是会更优的。

设$cnt[i]$表示序列$a$中,有多少个数$k$,满足$i\&k==i$(此处&表示按位与)

我们$f[i]$表示以i结尾的序列的最大值是多少,那么显然答案为$\max\limits_{0≤i<2^{20}}f[i]$

不难发现有$f[i]=\max\limits_{i\&k==i} f[k]+(cnt[k]-cnt[i])$。

如果说直接转移的话复杂度显然是$O(n^{\log_2^3})$的,这么搞只能过$70%$的数据。

所以要稍微考虑下转移的性质,我们只需要转移满足$k=i+2^j$的$k$即可。

这样时间复杂度就可以优化到$O(n\log\ n)$了。

 #include<bits/stdc++.h>
#define N 20
#define M (1<<N)
using namespace std;
int cnt[M]={}; long long f[M]={},ans=;
int main(){
for(int n,x=scanf("%d",&n);n;n--) scanf("%d",&x),cnt[x]++;
for(int j=;j<N;j++)
for(int i=M-(<<(j+));i>=;i--)
if((i&(<<j))==)
cnt[i]+=cnt[i+(<<j)];
for(int i=M-;~i;i--){
for(int j=;j<N;j++)
if((i&(<<j))==){
f[i]=max(f[i],f[i+(<<j)]+1LL*i*(cnt[i]-cnt[i+(<<j)]));
ans=max(ans,f[i]);
}
}
cout<<ans<<endl;
}

【xsy2272】 与运算 状压dp的更多相关文章

  1. 状压DP详解(位运算)

    前言: 状压DP是一种非常暴力的做法(有一些可以排除某些状态的除外),例如dp[S][v]中,S可以代表已经访问过的顶点的集合,v可以代表当前所在的顶点为v.S代表的就是一种状态(二进制表示),比如 ...

  2. 【POJ3254】Corn Fields 状压DP第一次

    !!!!!!! 第一次学状压DP,其实就是运用位运算来实现一些比较,挺神奇的.. 为什么要发“!!!”因为!x&y和!(x&y)..感受一下.. #include <iostre ...

  3. 【状压DP】bzoj1087 互不侵犯king

    一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...

  4. poj3254 Corn Fields (状压DP)

    http://poj.org/problem?id=3254 Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  5. BZOJ 1087 题解【状压DP】

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3112  Solved: 1816[Submit][ ...

  6. HITOJ 2662 Pieces Assignment(状压DP)

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  7. FZU 1025 状压dp 摆砖块

    云峰菌曾经提到过的黄老师过去讲课时的摆砖块 那时百度了一下题目 想了想并没有想好怎么dp 就扔了 这两天想补动态规划知识 就去FZU做专题 然后又碰到了 就认真的想并且去做了 dp思想都在代码注释里 ...

  8. 状压DP

    今天稍微看了下状压DP,大概就是这样子的,最主要的就是位运算, i and (1<<k)=0 意味着i状态下没有 k : i and (1<<k)>0 意味着i状态下有 ...

  9. POJ 3254 (状压DP) Corn Fields

    基础的状压DP,因为是将状态压缩到一个整数中,所以会涉及到很多比较巧妙的位运算. 我们可以先把输入中每行的01压缩成一个整数. 判断一个状态是否有相邻1: 如果 x & (x << ...

随机推荐

  1. Conda下安装libsvm

    如何在canda下安装libsvm? 版本:Python是2.7 canda2 首先想到的是去Python官网上找libsvm的包,结果并没有. 这是因为libsvm是c语言编写的并不是一个Pytho ...

  2. 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)

    传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai​代价将其分裂成另外的bib_ibi​个怪物或者用cic_ici​代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...

  3. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  4. php mysqli 链接数据库 CURD 增改查删

    <?php function println($msg) { echo "<br>"; echo $msg; } $mysql_server_name = &qu ...

  5. VB6.0中WinSock控件属性和方法详解

    原文链接:http://liweibird.blog.51cto.com/631764/653134 WinSock控件能够通过UDP协议(用户数据报协议)或TCP协议(数据传输协议)连接到远程的机器 ...

  6. POJ3258--River Hopscotch(Binary Search similar to POJ2456)

    Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully ...

  7. Java读取修改Properties文件

    properties文件是我们经常需要操作一种文件,它使用一种键值对的形式来保存属性集. 无论在学习上还是工作上经常需要读取,修改,删除properties文件里面的属性. 本文通过操作一个prope ...

  8. hdu 5071 vector操作恶心模拟

    http://acm.hdu.edu.cn/showproblem.php?pid=5071 对于每一个窗口,有两个属性:优先级+说过的单词数,支持8个操作:新建窗口,关闭窗口并输出信息,聊天(置顶窗 ...

  9. pycharm的基本使用

    1.设置注释字体的颜色,如下图 2.常用快捷键 Ctrl + Space 基本的代码完成(类.方法.属性) Ctrl + Alt + Space 类名完成 Ctrl + Shift + Enter 语 ...

  10. 绿色版Mysql自动建立my.ini和命令行启动并动态指定datadir路径

    1.先去下载绿色版的Mysql(https://cdn.mysql.com//archives/mysql-5.7/mysql-5.7.20-winx64.zip) 2.解压缩到任意目录(如D:\My ...