一道最短路+生成树

原题链接

实际上就是生成树的中每个点到节点\(1\)的距离等于原图中这个点到节点\(1\)的最短距离,求这样的生成树的棵数。

先用\(SPFA\)或\(Dijkstra\)求出所有点到节点\(1\)的最短路径\(dis[x]\),然后将所有节点按\(dis\)从小到大排序。

枚举\(x\),表示已经有\(x-1\)个点添入树,现在要添加第\(x\)个点。

统计有多少个点\(y\)满足\(y\)是已添入树的点,且\(dis[y]+edge(x,y)=dis[x]\),\(edge\)表示边长。

最后将每次将某个点添入树时的方案数累乘起来即可。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
const int mod = 1LL * (1 << 31) - 1;
struct dd {
int x, D;
};
dd dis[N];
int a[N][N];
bool v[N];
int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p |= c == '-';
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
int comp(dd x, dd y)
{
return x.D < y.D;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
int main()
{
int i, j, n, m, x, y, s = 1, k;
n = re();
m = re();
memset(a, 60, sizeof(a));
memset(dis, 60, sizeof(dis));
for (i = 1; i <= n; i++)
{
a[i][i] = 0;
dis[i].x = i;
}
for (i = 1; i <= m; i++)
{
x = re();
y = re();
a[x][y] = a[y][x] = re();
}
dis[1].D = 0;
for (i = 1; i <= n; i++)
{
x = 0;
for (j = 1; j <= n; j++)
if (!v[j] && (dis[j].D < dis[x].D || !x))
x = j;
if (!x)
break;
v[x] = 1;
for (j = 1; j <= n; j++)
dis[j].D = minn(dis[j].D, dis[x].D + a[x][j]);
}
sort(dis + 1, dis + n + 1, comp);
for (i = 2; i <= n; i++)
{
k = 0;
for (j = 1; j < i; j++)
if (dis[j].D + a[dis[j].x][dis[i].x] == dis[i].D)
k++;
s = (1LL * s*k) % mod;
}
printf("%d", s);
return 0;
}

CH6202 黑暗城堡的更多相关文章

  1. 「CH6202」黑暗城堡

    「CH6202」黑暗城堡 传送门 这道题是要让我们求以点 \(1\) 为源点的最短路树的方案数. 我们先跑一遍最短路,然后考虑类似 \(\text{Prim}\) 的过程. 当我们把点 \(x\) 加 ...

  2. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  3. 【loj10064】黑暗城堡

    #10064. 「一本通 3.1 例 1」黑暗城堡 内存限制:512 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统    评测方式:文本比较 上传者: 1bentong 提交     ...

  4. [LOJ#10064]黑暗城堡

    Description 在顺利攻破 Lord lsp 的防线之后,lqr 一行人来到了 Lord lsp 的城堡下方.Lord lsp 黑化之后虽然拥有了强大的超能力,能够用意念力制造建筑物,但是智商 ...

  5. 一本通 P1486 【黑暗城堡】

    题库 :一本通 题号 :1486 题目 :黑暗城堡 link :http://ybt.ssoier.cn:8088/problem_show.php?pid=1486 思路 :这道题既然要求使加入生成 ...

  6. 信息奥赛一本通1486: CH 6202 黑暗城堡 最短路径生成树计数

    1486:黑暗城堡 [题目描述] 知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设 Di为如果所有的通道都被修建,第 i 号房间与第 1 ...

  7. loj黑暗城堡

    黑暗城堡 题目描述 你知道黑暗城堡有\(N\)个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设\(D_i\)为如果所有的通道都被修建,第i号房间与第1号房间 ...

  8. LOJ10064黑暗城堡

    题目描述你知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设 Di​ 为如果所有的通道都被修建,第 i 号房间与第 1 号房间的最短路径长 ...

  9. T57274 黑暗城堡

    传送门 思路: 先求出各个点到 1 的最短路径.分别用两个数组将最短路径记录下来(一个要用来排序).按排序后的 dis 值从小到大枚举各点加入树有多少种方案,最后根据乘法原理把各个点的方案数乘起来就是 ...

随机推荐

  1. Python 如何创建2维空数组

    http://blog.csdn.net/yockie/article/details/46127829 myList = [ ( [0] * 3 ) for i in range(4) ] > ...

  2. SAP 使用

    SAP 提供多种方法查找系统内的事务代码 1. 使用SE11查看存储事物代码的表:TSTC 或者TSTCT TSTC: 存有事务代码,程序名称,屏幕号码等字段 TSTCT: 存有语言代码,事务代码,事 ...

  3. Eclipse 合并GIT分支

    合并GIT分支: 1.  切换到主分支: 2.  右击项目——Team——Merge…: 3.  在弹出的Merge框中选择要合并的分支——Merge: 4.  合并后如果出现冲突,右击项目——Tea ...

  4. hashcode() equals()

     介绍一. hashCode()方法和equal()方法的作用其实一样,在Java里都是用来对比两个对象是否相等一致,那么equal()既然已经能实现对比的功能了,为什么还要hashCode()呢? ...

  5. Jetty 与 Tomcat 的比较

    Tomcat 和 Jetty 都是作为一个 Servlet 引擎应用的比较广泛,可以将它们比作为中国与美国的关系,虽然 Jetty 正常成长为一个优秀的 Servlet 引擎,但是目前的 Tomcat ...

  6. Socket通讯-Netty框架实现Java通讯

    Netty简介 Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客户端程序. 也就是说,Netty ...

  7. jdbc连接mysql/oracle数据库

    driver-class-name : com.mysql.jdbc.Driver url : jdbc:mysql://localhost:3306/数据库名 username:   root pa ...

  8. NDK环境搭建方法1

    1.新建NdkDemo工程 2.新建NdkJniUtils类,在内部声明native方法 3.引用 4.build项目,生成NdkDemo\app\build\intermediates\classe ...

  9. ext.js的目录结构的简单解释

    adapter:负责将里面提供第三方底层库(包括Ext自带的底层库)映射为Ext所支持的底层库.    build: 压缩后的ext全部源码(里面分类存放).    docs: API帮助文档.    ...

  10. 三星笔记本安装系统时报错:image failed to verify with * access denied* press any key to continue.

    安装系统从光盘启动报错: 出现黑屏,并且有一个提示框image failed to verify with *access denied*press any key to continue 原因:三星 ...