LUOGU P4777 【模板】扩展中国剩余定理(EXCRT)
解题思路
扩展 $crt$,就是中国剩余定理在模数不互质的情况下,首先对于方程
$\begin{cases} x\equiv a_1\mod m_1\\x\equiv a_2\mod m_2\end{cases}$
来说,可以将其写为:
$\begin{cases} x=k_1*m_1+a_1\\x=k_2*m_2+a_2\end{cases}$
然后联立方程:
$k_1*m_1+a_1=k_2*m_2+a_2$
$\Leftrightarrow -k_1*m_1+k_2*m_2=a_1-a_2$
a这样的话形式就很像$exgcd$ 了,可以$exgcd$求出$k_1'*m_1+k_2'*m_2=gcd(m_1,m_2)$的$k_1'$了,然后若$(a_1-a_2)\%gcd(m_1,m_2)\neq 0$,则无解。然后让方程两边同时乘$(a_1-a_2)/gcd(m_1,m_2)$,就可以求出$k_1$了,最后再带入原式可以求出$x$的值,这个$x$记为$x_0$ ,即为满足上面两个方程的一个解,然后将这两个方程
合并成一个方程:$x\equiv x_0\mod lcm(m_1,m_2)$,之后就可以一直合并就行了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib> using namespace std;
const int MAXN = ;
typedef long long LL;
//typedef __int128 LL; inline LL rd(){
LL x=,f=;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?:;ch=getchar();}
while(isdigit(ch)) {x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
} int n;
LL a[MAXN],b[MAXN],M,R; LL slow_mul(LL x,LL y,LL mod){
LL ret=;
for(;y;y>>=){
if(y&) ret=(ret+x)%mod;
x=(x+x)%mod;
}
return ret;
} LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b) {x=;y=;return a;}
LL now=exgcd(b,a%b,x,y);
LL t=x;x=y;y=t-(a/b)*y;
return now;
} int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) a[i]=rd(),b[i]=rd();
M=a[];R=b[];LL x,y,d,now;
for(int i=;i<=n;i++){
d=exgcd(M,a[i],x,y);
// if((R-r[i])%d!=0) puts("-1");
now=((R-b[i])%a[i]+a[i])%a[i];
x=slow_mul(x,now/d,a[i]);R-=M*x;
M=M*(a[i]/d);R=(R%M+M)%M;
}
printf("%lld",(R%M+M)%M);
return ;
}
LUOGU P4777 【模板】扩展中国剩余定理(EXCRT)的更多相关文章
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- 扩展中国剩余定理 (ExCRT)
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...
- 扩展中国剩余定理(EXCRT)快速入门
问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
- [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)
题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
- 扩展中国剩余定理(EXCRT)学习笔记
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...
随机推荐
- python list基本操作一
a = [1,2,3,1,2,3] 一.删除元素 1.按索引删除: a.pop(1) # 删除第二个值 # in:[1,2,3,2] # out:[1,3,2] 返回值:被删除的元素,这个时候list ...
- Rabbit MQ 客户端 API 开发
项目开始 第一步首先需要引入对应的 jar 包 <!-- https://mvnrepository.com/artifact/com.rabbitmq/amqp-client --> & ...
- 消息中间件kafka学习记录
目录 1. 概述 2. 环境准备 3. 命令行常用命令 4. java api实现 1. 概述 Apache Kafka是一个分布式消息系统,凭借其优异的特性而被广泛使用. 高性能:O(1)复杂度消息 ...
- 《转》python
转自http://www.cnblogs.com/BeginMan/archive/2013/06/03/3114974.html 1.print语句调用str()函数显示,交互式解释器调用repr( ...
- Selenium(一)---Selenium的安装和使用
一.前言 最近在帮一个老师爬取网页内容,发现网页是动态加载的,为了拿到全部的网页数据,这里使用到了Selenium.Selenium 是一个用于Web应用程序测试的工具,它可以模拟真实浏览器,支持多种 ...
- HTML_页面注册案例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- CentOS 7 下配置 Nginx + PHP7.1 + MariaDB 以及 Laravel 框架
<!doctype html> CentOS 7 下配置 Nginx + PHP7.1 + MariaDB 以及 Laravel 框架.mdhtml {overflow-x: initia ...
- nodejs http ejs
// ejs-demo.jsvar http = require('http'); var ejs = require('ejs'); var url = require('url'); // 搭建 ...
- Liunx下安装Oracle11g时Oracle Grid安装包下载向导
下载Oracel 11g Grid的安装包 Oracle官网 https://www.oracle.com 快捷访问路径:https://www.oracle.com/technetwork/dat ...
- python中的 += 语法的使用
python中有个缩略的写法,如下 a = a +1 等同于 a +=1 发现了一个有趣之处,+=的写法中间不能有空格,否则报错,测试如下 Python 3.7.1 (v3.7.1:260ec2c36 ...