hive的数据存储格式
hive的数据存储格式
Hive支持的存储数的格式主要有:TEXTFILE(行式存储) 、SEQUENCEFILE(行式存储)、ORC(列式存储)、PARQUET(列式存储)。
1 列式存储和行式存储
上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。
行存储的特点: 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。
列存储的特点: 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
ORC和PARQUET是基于列式存储的。
2 TEXTFILE格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
3 ORC格式
Orc (Optimized Row Columnar)是hive 0.11版里引入的新的存储格式。
可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:
一个orc文件可以分为若干个Stripe
一个stripe可以分为三个部分
indexData:某些列的索引数据
rowData :真正的数据存储
StripFooter:stripe的元数据信息
1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引只是记录某行的各字段在Row Data中的offset。
2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
3)Stripe Footer:存的是各个stripe的元数据信息
每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。
4 PARQUET格式
Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。
Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示。
上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。
5 主流文件存储格式对比实验
从存储文件的压缩比和查询速度两个角度对比。
存储文件的压缩比测试:
0)测试数据 参见log.data
1)TextFile
(1)创建表,存储数据格式为TEXTFILE
create table log_text ( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE ; |
(2)向表中加载数据
load data local inpath '/export/servers/hivedatas/log.data' into table log_text ; |
(3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_text; |
18.1 M /user/hive/warehouse/log_text/log.data
2)ORC
(1)创建表,存储数据格式为ORC
create table log_orc( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc ; |
(2)向表中加载数据
insert into table log_orc select * from log_text ; |
(3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_orc; |
2.8 M /user/hive/warehouse/log_orc/123456_0
3)Parquet
(1)创建表,存储数据格式为parquet
create table log_parquet( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS PARQUET ; |
(2)向表中加载数据
insert into table log_parquet select * from log_text ; |
(3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_parquet; |
13.1 M /user/hive/warehouse/log_parquet/123456_0
存储文件的压缩比总结:
ORC > Parquet > textFile
存储文件的查询速度测试:
1)TextFile
hive (default)> select count(*) from log_text;
_c0
100000
Time taken: 21.54 seconds, Fetched: 1 row(s)
2)ORC
hive (default)> select count(*) from log_orc;
_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)
3)Parquet
hive (default)> select count(*) from log_parquet;
_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)
存储文件的查询速度总结:
ORC > TextFile > Parquet
hive的数据存储格式的更多相关文章
- 第3节 hive高级用法:15、hive的数据存储格式介绍
hive当中的数据存储格式: 行式存储:textFile sequenceFile 都是行式存储 列式存储:orc parquet 可以使我们的数据压缩的更小,压缩的更快 数据查询的时候尽量不要用se ...
- hive中数据存储格式对比:textfile,parquent,orc,thrift,avro,protubuf
这篇文章我会从业务中关注的: 1. 存储大小 2.查询效率 3.是否支持表结构变更既数据版本变迁 5.能否避免分隔符问题 6.优势和劣势总结 几方面完整的介绍下hive中数据以下几种数据格式:text ...
- Hive[4] 数据定义 HiveQL
HiveQL 是 Hive 查询语言,它不完全遵守任一种 ANSI SQL 标准的修订版,但它与 MySQL 最接近,但还有显著的差异,Hive 不支持行级插入,更新和删除的操作,也不支持事务,但 H ...
- hadoop笔记之Hive的数据存储(内部表)
Hive的数据存储(内部表) Hive的数据存储(内部表) 基于HDFS 可使用hadoop给我们提供的web管理工具查看数据.打开管理工具localhost:9000–>Utilities下的 ...
- Hive之 数据存储
首先,Hive 没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据. 其次 ...
- Hive 表数据的存储和压缩格式
SerDe * 按行存储 * 按列存储 file_format: : | SEQUENCEFILE 序列化(行存储) | TEXTFILE 文本格式(行存储)- (Default, depending ...
- Hive 官方手册翻译 -- Hive DDL(数据定义语言)
Hive DDL(数据定义语言) Confluence Administrator创建, Janaki Lahorani修改于 2018年9月19日 原文链接 https://cwiki.apache ...
- hive常见的存储格式
Hive常见文件存储格式 背景:列式存储和行式存储 首先来看一下一张表的存储格式: 字段A 字段B 字段C A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5 行 ...
- Hive 表操作(HIVE的数据存储、数据库、表、分区、分桶)
1.Hive的数据存储 Hive的数据存储基于Hadoop HDFS Hive没有专门的数据存储格式 存储结构主要包括:数据库.文件.表.试图 Hive默认可以直接加载文本文件(TextFile),还 ...
随机推荐
- java输入一个整数N,打印1~n位数
举个栗子:输入 3 : 打印1,2,3......999 这里要注意一个坑,不可以直接算出最大的数,然后从1开始打印 .因为当n足够大时,n位数必定会超出int范围和long范围 所以我们需要用字符串 ...
- JQuery 浮动DIV显示提示信息并自动隐藏
/** * 浮动DIV定时显示提示信息,如操作成功, 失败等 * @param string tips (提示的内容) * @param int height 显示的信息距离浏览器顶部的高度 * @p ...
- Angular.js分页代码
$scope.reloadList=function(){ $scope.findPage( $scope.pagina ...
- jQuery Validate (摘自官网)
jQuery Validate 插件为表单提供了强大的验证功能,让客户端表单验证变得更简单,同时提供了大量的定制选项,满足应用程序各种需求.该插件捆绑了一套有用的验证方法,包括 URL 和电子邮件验证 ...
- div + css 边框 虚线
div + css 边框 虚线 dotted:[点线|有点的|点线式边框|点虚线] .introduce { border:1px dotted gray; margin:8px 5px 8px 10 ...
- CSS:CSS Id 和 Class选择器
ylbtech-CSS:CSS Id 和 Class选择器 1.返回顶部 1. CSS Id 和 Class id 和 class 选择器 如果你要在HTML元素中设置CSS样式,你需要在元素中设置& ...
- 浅谈虚拟机、Docker和Hyper技术
操作系统 我们知道: 完整的操作系统=内核+apps 内核负责管理底层硬件资源,包括CPU.内存.磁盘等等,并向上为apps提供系统调用接口,上层apps应用必须通过系统调用方式使用硬件资源,通常并不 ...
- 数据挖掘 FP-tree算法C++实现及源码
FP-growth挖掘算法 步骤一 扫描数据库,扫描数据库一次,得到频繁1-项集,把项按支持度递减排序,再一次扫描数据库,建立FP-tree 步骤二 对每个项,生成它的 条件模式库 步骤三 用条件模式 ...
- vscode eslint插件对vue文件无效
vscode配置好了之后,只对.js文件提示 vue文件没有效果 改成如下配置就好了. "eslint.validate": [ "javascript", & ...
- jenkins+jacoco配置代码覆盖率
一.服务器端配置 1.在代码部署服务器中安装jacoco,用于手工/接口测试覆盖率监听收集 2a.正常情况下,可在服务器中代码部署模块下的default文件夹中,修改tomcat文件如下 其中,inc ...