共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭;
那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起:
在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B ,A先发生,B后发生,B的发生与否是与A有关系的,那么我们要想根据B的发生情况来计算 A发生的概率就是所谓的后验概率P(A|B)(后验概率是一个条件概率,即在B发生的条件下A发生的概率)计算公式是P(A|B)=P(AB)/P(B),而又有乘法公式P(AB)=P(A)P(B|A),这里的P(A)称为先验概率,它是先发生的,也可以是人为假定的,但是通常是不能通过训练样本直接统计得出的,所以我们的需要利用后验概率来求取先验概率,也就是通常意义上的由果推因。后验概率是在新的样本加入之后得到的,有更多的事实作为参考,进而对先验进行修正。似然函数则是指P(B|A),也是一个条件概率,是指在先验发生的条件下后验发生的可能性,是一种正向推理的过程,通常是模型参数的函数。
即P(A|B)=P(A)P(B|A)/P(B),中P(A)称为先验概率,P(B|A)似然函数,P(A|B)后验概率。
三者的关系:
后验概率正比于先验概率与似然函数的乘积
Posterior probability∝Likelihood×Prior probability
在使用中我们用 p(θ) 表示概率分布函数,用 p(x|θ) 表示观测值 x 的似然函数。
后验概率定义如下:p(θ|x)=p(x|θ)p(θ)/p(x)

下面来谈共轭

现在假设我们有这样几类概率: p(θ)(先验分布),p(θ|x)(后验分布), p(X), p(X|θ) (似然函数)

它们之间的关系可以通过贝叶斯公式进行连接: 后验分布 = 似然函数* 先验分布/ P(X)

之所以采用共轭先验的原因是可以使得先验分布和后验分布的形式相同,这样一方面合符人的直观(它们应该是相同形式的)另外一方面是可以形成一个先验链,即现在的后验分布可以作为下一次计算的先验分布,如果形式相同,就可以形成一个链条。

为了使得先验分布和后验分布的形式相同,我们定义:如果先验分布和似然函数可以使得先验分布和后验分布有相同的形式,那么就称先验分布与似然函数是共轭的,共轭的结局是让先验与后验具有相同的形式

注意:共轭是指的先验分布和似然函数

两个例子
Beta is the conjugate prior of Binomial.
Dirichlet is the conjugate prior of multinomial.

共轭先验(conjugate prior)的更多相关文章

  1. Conjugate prior relationships

    Conjugate prior relationships The following diagram summarizes conjugate prior relationships for a n ...

  2. An Introduction to Variational Methods (5.3)

    从之前的文章中,我们已经得到了所有需要求解的参数的优化分布的形式,分别为: ‍ 但是,我们从这些分布的表达式中(参见之前的文章),可以发现这些式子并不能够直接求解.这是因为各个参数之间相互耦合,从而导 ...

  3. 贝叶斯线性回归(Bayesian Linear Regression)

    贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原 ...

  4. 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用

    在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...

  5. Bayesian statistics

    文件夹 1Bayesian model selection贝叶斯模型选择 1奥卡姆剃刀Occams razor原理 2Computing the marginal likelihood evidenc ...

  6. Pattern Recognition And Machine Learning (模式识别与机器学习) 笔记 (1)

    By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础 ...

  7. 转:Conjugate prior-共轭先验的解释

    Conjugate prior-共轭先验的解释    原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...

  8. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

  9. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior

    先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...

随机推荐

  1. 20191024-3 互评Alpha阶段作品——构建之法组

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/9860 基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评 ...

  2. JVM系列(三):java的垃圾回收机制

    java垃圾回收机制介绍    上一篇讲述了JVM的内存模型,了解了到了绝大部分的对象是分配在堆上面的,我们在编码的时候并没有显示的指明哪些对象需要回收,但是程序在运行的过程中是会一直创建对象的,之所 ...

  3. 1088 三人行 (20分)C语言

    子曰:"三人行,必有我师焉.择其善者而从之,其不善者而改之." 本题给定甲.乙.丙三个人的能力值关系为:甲的能力值确定是 2 位正整数:把甲的能力值的 2 个数字调换位置就是乙的能 ...

  4. shell点名脚本不重复人名

    效果如图: 代码如下: #!/bin/bash #Author:GaoHongYu #QQ: #Time:-- :: #Name:dm.sh #Version:V1. stu=(刘一 陈二 张三 李四 ...

  5. 快速部署postfix邮件服务器

    • 装包.配置.起服务– 默认的标准配置即可为本机提供发/收邮件服务– 若有必要,可扩大服务范围(邮件域) 前提:邮件服务器,必须为手工配置永久主机名虚拟机server0[root@server0 ~ ...

  6. JPA或Hibernate中使用原生SQL实现分页查询、排序

    发生背景:前端展示的数据需要来自A表和D表拼接,A表和D表根据A表的主键进行关联,D表的非主键字段关联C表的主键,根据条件筛选出符合的数据,并且根据A表的主键关联B表的主键(多主键)的条件,过滤A表中 ...

  7. 能快速理解Java_集合类_的文章

    目录 @ 这篇文章是我学习完Java集合类做的笔记和总结,如果你想认真细读这篇文章,请做好受虐的准备(建议电脑看),因为这篇文章有点长,ヽ(ー_ー)ノ. 如果在看我这篇文章过程中,发现了错误,望指点. ...

  8. Spring Boot从零入门3_创建Hello World及项目剖析

    目录 1 前言 2 名词术语 3 创建Hello World项目 3.1 基于STS4创建项目 3.2 使用Spring Initializr Website创建项目并导入 3.3 基于Spring ...

  9. 贪心 park

    来总结一道非常经典的好题 这一道题是通过贪心实现的 首先看到这一题的时间复杂度 n<=100000 需要一个比较玄学的做法 我们先假设把题干改成这个样子 一圈n个车位 停在每个车位都有一定的代价 ...

  10. mysql复习1

    SQL语句分为以下三种类型: DML: Data Manipulation Language 数据操纵语言,用于查询与修改数据记录,包括如下SQL语句:INSERT:添加数据到数据库中UPDATE:修 ...