liner classifiers

逻辑回归用在2分类问题上居多。它是一个非线性的回归模型,其最大的好处恰恰是可以解决二元类问题,目前在金融行业,基本都是使用Logistic回归来预判一个用户是否为好客户,因为它还弥补了其他黑盒模型(SVM、神经网络、随机森林等)不具解释性的缺点。知乎

1.logistic

  • 逻辑回归其实是一个分类算法而不是回归算法。通常是利用已知的自变量来预测一个离散型因变量的值(像二进制值0/1,是/否,真/假)。简单来说,它就是通过拟合一个逻辑函数(logit fuction)来预测一个事件发生的概率。所以它预测的是一个概率值,自然,它的输出值应该在0到1之间。--计算的是单个输出

1.2 sigmoid

逻辑函数

\(g(z)=\frac{1}{1+e^{-z}}\)

  • sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1。它的这个特性对于解决二分类问题十分重要
  • 二分类中,输出y的取值只能为0或者1,所以在线性回归的假设函数外包裹一层Sigmoid函数,使之取值范围属于(0,1),完成了从值到概率的转换。逻辑回归的假设函数形式如下

    \(h_{\theta}(x)=g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}}=P(y=1 | x ; \theta)\)

    则若\(P(y=1 | x ; \theta)=0.7\),则表示输入为x的时候,y=1的概率为0.7

1.3 决策边界

决策边界,也称为决策面,是用于在N维空间,将不同类别样本分开的直线或曲线,平面或曲面

根据以上假设函数表示概率,我们可以推得

if \(h_{\theta}(x) \geqslant 0.5 \Rightarrow y=1\)

if \(h_{\theta}(x)<0.5 \Rightarrow y=0\)

1.3.1 线性决策边界

1.3.2 非线性决策边界

1.4 代价函数/损失函数

在线性回归中的代价函数为

\(J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}\)

  • 因为它是一个凸函数,所以可用梯度下降直接求解,局部最小值即全局最小值
  • 只有把函数是或者转化为凸函数,才能使用梯度下降法进行求导哦
  • 在逻辑回归中,\(h_{\theta }(x)\)是一个复杂的非线性函数,属于非凸函数,直接使用梯度下降会陷入局部最小值中。类似于线性回归,逻辑回归的\(J(\theta )\)的具体求解过程如下
  • 对于输入x,分类结果为类别1和类别0的概率分别为:

    \(P(y=1 | x ; \theta)=h(x) ; \quad P(y=0 | x ; \theta)=1-h(x)\)
  • 因此化简为一个式子可以写为

    \(\left.P(y | x ; \theta)=(h(x))^{y}(1-h(x))^{(} 1-y\right)\)

1.4.1 似然函数

\(\begin{aligned} L(\theta) &=\prod_{i=1}^{m} P\left(y^{(i)} | x^{(i)} ; \theta\right) \\ &=\prod_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)\right)^{y^{(0)}}\left(1-h_{\theta}\left(x^{(i)}\right)\right)^{1-y^{(i)}} \end{aligned}\)

似然函数取对数之后

\(\begin{aligned} l(\theta) &=\log L(\theta) \\ &=\sum_{i=1}^{m}\left(y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right) \end{aligned}\)

  • 根据最大似然估计,需要使用梯度上升法求最大值,因此,为例能够使用梯度下降法,需要将代价函数构造成为凸函数

    因此

    \(J(\theta )=-\frac{1}{m} l(\theta )\)

    此时可以使用梯度下降求解了
  • \(\theta_{j}\)更新过程为

    \(\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)\)

    中间求导过程省略

    \(\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(\mathrm{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}, \quad(j=0 \ldots n)\)

1.5正则化

损失函数中增加惩罚项:参数值越大惩罚越大–>让算法去尽量减少参数值

损失函数 \(J(β)\)的简写形式:

\(J(\beta)=\frac{1}{m} \sum_{i=1}^{m} \cos (y, \beta)+\frac{\lambda}{2 m} \sum_{j=1}^{n} \beta_{j}^{2}\)

  • 当模型参数 β 过多时,损失函数会很大,算法要努力减少 β 参数值来让损失函数最小。
  • λ 正则项重要参数,λ 越大惩罚越厉害,模型越欠拟合,反之则倾向过拟合

1.5.1 lasso

l1正则化

\(J(\beta)=\frac{1}{m} \sum_{i=1}^{\mathrm{m}} \cos t(y, \beta)+\frac{\lambda}{2 m} \sum_{j=1}^{n}\left|\beta_{j}\right|\)

1.5.2 ridge

l2正则化

\(J(\beta)=\frac{1}{m} \sum_{i=1}^{\mathrm{m}} \cos t(y, \beta)+\frac{\lambda}{2 m} \sum_{j=1}^{n} \beta_{j}^{2}\)

1.6 python实现

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None

1.6.1 参数

  • penalty:{‘l1’, ‘l2’, ‘elasticnet’, ‘none’}, default=’l2’ 正则项,默认是l2

    • The ‘newton-cg’, ‘sag’ and ‘lbfgs’ solvers support only l2 penalties. ‘elasticnet’ is only supported by the ‘saga’ solver. If ‘none’ (not supported by the liblinear solver), no regularization is applied.LogisticRegression
  • dual:bool, default=False

    -Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features,一般情况下是false
  • tol:float, default=1e-4 阈值,迭代终止条件按
  • C:float, default=1.0
    • Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization,正则化强度的倒数;必须是正浮点数。与支持向量机一样,较小的值指定更强的正则化

      -solver:{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default=’lbfgs’
    • Algorithm to use in the optimization problem.
    • For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are faster for large ones.
    • For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes.
    • ‘newton-cg’, ‘lbfgs’, ‘sag’ and ‘saga’ handle L2 or no penalty
    • ‘liblinear’ and ‘saga’ also handle L1 penalty
    • ‘saga’ also supports ‘elasticnet’ penalty
    • ‘liblinear’ does not support setting penalty='none'
  • multi_class:{‘auto’, ‘ovr’, ‘multinomial’}, default=’auto’ 这个参数是多元分类中用到的,二分类中不涉及
    • If the option chosen is ‘ovr’, then a binary problem is fit for each label.
    • For ‘multinomial’ the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. **‘multinomial’ is unavailable when solver=’liblinear’. **

      -‘auto’ selects ‘ovr’ if the data is binary, or if solver=’liblinear’, and otherwise selects ‘multinomial’.

1.6.1 属性

  • classes_:ndarray of shape (n_classes, )属性数组

    A list of class labels known to the classifier.
  • coef_:ndarray of shape (1, n_features) or (n_classes, n_features)属性和特征分类的数组
    • Coefficient of the features in the decision function.
    • coef_ is of shape (1, n_features) when the given problem is binary. In particular, when multi_class='multinomial', coef_ corresponds to outcome 1 (True) and -coef_ corresponds to outcome 0 (False).
  • intercept_:ndarray of shape (1,) or (n_classes,)

    Intercept (a.k.a. bias) added to the decision function.

    If fit_intercept is set to False, the intercept is set to zero. intercept_ is of shape (1,) when the given problem is binary. In particular, when multi_class='multinomial', intercept_ corresponds to outcome 1 (True) and -intercept_ corresponds to outcome 0 (False).

n_iter_:ndarray of shape (n_classes,) or (1, )

Actual number of iterations for all classes. If binary or multinomial, it returns only 1 element. For liblinear solver, only the maximum number of iteration across all classes is given.

 # Create LogisticRegression object and fit
lr = LogisticRegression(C=C_value)
lr.fit(X_train, y_train) # Evaluate error rates and append to lists
train_errs.append( 1.0 - lr.score(X_train, y_train) )
valid_errs.append( 1.0 - lr.score(X_valid, y_valid) ) # Plot results
plt.semilogx(C_values, train_errs, C_values, valid_errs)
plt.legend(("train", "validation"))
plt.show()

二分类模型之logistic的更多相关文章

  1. 【AUC】二分类模型的评价指标ROC Curve

    AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,acc ...

  2. Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)

    一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X5 ...

  3. 逻辑回归(Logistic Regression)二分类原理及python实现

    本文目录: 1. sigmoid function (logistic function) 2. 逻辑回归二分类模型 3. 神经网络做二分类问题 4. python实现神经网络做二分类问题 1. si ...

  4. Kaggle实战之二分类问题

    0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...

  5. 分类模型的性能评价指标(Classification Model Performance Evaluation Metric)

    二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错 ...

  6. matlab 实现感知机线性二分类算法(Perceptron)

    感知机是简单的线性分类模型 ,是二分类模型.其间用到随机梯度下降方法进行权值更新.参考他人代码,用matlab实现总结下. 权值求解过程通过Perceptron.m函数完成 function W = ...

  7. NLP(二十)利用BERT实现文本二分类

      在我们进行事件抽取的时候,我们需要触发词来确定是否属于某个特定的事件类型,比如我们以政治上的出访类事件为例,这类事件往往会出现"访问"这个词语,但是仅仅通过"访问&q ...

  8. NLP(二十二)利用ALBERT实现文本二分类

      在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此 ...

  9. keras框架下的深度学习(二)二分类和多分类问题

    本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...

随机推荐

  1. bind() 理解 【转】

    bind()可稍后执行  call()  apply() 为了搞清这个陌生又熟悉的bind,google一下,发现javascript1.8.5版本中原生实现了此方法,目前IE9+,ff4+,chro ...

  2. Standby Redo Logs的前世今生与最佳实践

    编辑手记:使用过Data Guard的人应该对于Standby Redo Logs都不陌生,在配置了 Standby Redo Logs的standby中,能够进行日志的实时应用,同时Standby ...

  3. 第3章 JDK并发包(三)

    3.2 线程复用:线程池 一种最为简单的线程创建和回收的方法类似如下代码: new Thread(new Runnable() { @Override public void run() { // d ...

  4. Go语言实现:【剑指offer】数据流中的中位数

    该题目来源于牛客网<剑指offer>专题. 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位 ...

  5. 实验楼-python3简明教程笔记

    #!/usr/bin/env python3 days = int(input("Enter days: ")) print("Months = {} Days = {} ...

  6. 苹果系统iOS、macOS应用管理机制

    iOS.macOS系统应用管理机制 苹果系统包括:iOS.macOS.watchOS.tvOS.应用软件的生命周期为:开发.上线.安装.使用.卸载.这篇文档将从应用生命周期的各个环节介绍苹果系统对应用 ...

  7. [RHEL8]开启BBR

    # sysctl net.ipv4.tcp_congestion_control net.ipv4.tcp_congestion_control = cubic # sysctl net.ipv4.t ...

  8. MyBatis 与Ibatis 区别

    Ibatis 是 Mybatis 的前身,两者都是优秀的持久层框架. 区别: 1.mybatis 实现接口绑定,不需要具体接口实现类.但是需要在xml文件中 的 namespace 绑定具体的接口. ...

  9. C primer plus 6 编程练习答案

    环境:vs2017 /**编程练习2**/ */ #include<stdio.h> int main(void) { printf("张三\n"); printf(& ...

  10. IO流之File对象

    File类: 用来将文件或者文件夹封装成对象 方便对文件与文件夹的属性等信息进行操作(因为流只能操作文件中的数据) File对象可以作为参考传递给流的构造函数 上下级文件夹之间使用分隔符分开: 在Wi ...