time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Andrey needs one more problem to conduct a programming contest. He has n friends who are always willing to help. He can ask some of them to come up with a contest problem. Andrey knows one value for each of his fiends — the probability that this friend will come up with a problem if Andrey asks him.

Help Andrey choose people to ask. As he needs only one problem, Andrey is going to be really upset if no one comes up with a problem or if he gets more than one problem from his friends. You need to choose such a set of people that maximizes the chances of Andrey not getting upset.

Input

The first line contains a single integer n (1 ≤ n ≤ 100) — the number of Andrey's friends. The second line contains n real numbers pi (0.0 ≤ pi ≤ 1.0) — the probability that the i-th friend can come up with a problem. The probabilities are given with at most 6 digits after decimal point.

Output

Print a single real number — the probability that Andrey won't get upset at the optimal choice of friends. The answer will be considered valid if it differs from the correct one by at most 10 - 9.

Examples

Input

4

0.1 0.2 0.3 0.8

Output

0.800000000000

Input

2

0.1 0.2

Output

0.260000000000

Note

In the first sample the best strategy for Andrey is to ask only one of his friends, the most reliable one.

In the second sample the best strategy for Andrey is to ask all of his friends to come up with a problem. Then the probability that he will get exactly one problem is 0.1·0.8 + 0.9·0.2 = 0.26.

题目大意

有\(n\)个人,你可以挑出一部分人来向他们要一道题,第\(i\)个人给你题的概率为\(p_i\),你只需要一道题,多了或少了你都不高兴。问在所有的选人方案里,有且仅有一道题的最大概率是多少?

题解

官方题解很明白不是很清楚你们为什么看不懂

先考虑选出的集合$A = { p_1, p_2, p_3, \ldots , p_n } $

概率\(Ans\)为

\[Ans = \sum_{i=1}^{n} p_i \prod _{j=1}^{n}[i\neq j] \times (1-p_j)
\]

\[=\sum_{i=1}^{n}\frac{p_i}{1-p_i} \prod _{j=1}^{n}(1-p_j)
\]

\[=(\prod_{j=1}^{n}(1-p_j))\times(\sum_{i=1}^{n}\frac{p_i}{1-p_i})
\]

考虑向集合内添加一个新的元素\(p_x\),对答案的贡献为:

\[\Delta = (\prod_{j=1}^{n}(1-p_j))\times(1-p_x) \times ((\sum_{i=1}^{n}\frac{p_i}{1-p_i}) + \frac{p_x}{1-p_x})) - (\prod_{j=1}^{n}(1-p_j))\times(\sum_{i=1}^{n}\frac{p_i}{1-p_i})
\]

看上去非常乱

记\(P = \prod_{j=1}^{n}(1-p_j),S=\sum_{i=1}^{n}\frac{p_i}{1-p_i}\)

上述式子改写成

\[Ans = P \times S
\]

\[\Delta = P \times (1 - p_x) \times (S + \frac{p_x}{1-p_x}) - P \times S
\]

\[=P \times p_x \times (1 - S)
\]

发现:

引理1:唯有当\(S < 1\)时,\(x\)才会加入集合

那么对于所有满足\(S < 1\)的元素,我们加哪个更好呢?

考虑两个元素\(i,j,i\neq j\),他们的贡献差为:

\[\Delta ^{'}= \Delta_i - \Delta_j
\]

\[=P\times p_i(1 - S) - P \times p_j \times (1-S)
\]

\[=P\times (1-S)\times(p_i - p_j)
\]

由此得到:

引理2:当元素\(i\)比\(j\)更优时,当且仅当\(\Delta ^{'}> 0\),即\(p_i > p_j\)

算法不难得出:按照\(p_i\)排序,不断往里加,一直加到\((1-S) \leq 0\)为止,即为答案

接下来通过上述结论来证明算法正确的充分性,即算法的是正确答案。

考虑反证法,假设最有答案集合为\(A\),存在元素\(i,j\),满足\(i \in A,j \notin B,p_i < p_j\),那我们把\(i\)从集合\(A\)中去掉,此时一定满足\((1-S) > 0\)(不然最优答案为啥要把\(i\)加进去呢)。根据引理1我们可以把\(j\)加进去,根引理2,加入\(j\)比加入\(i\)更优,与\(A\)为最优矛盾。所以\(j\)应该加入答案。

归纳一下算法就是对的了(唔)

此外还要加个特判

因为\(p_i = 1\)的时候S就挂了。。

所以如果出现\(1\),答案就是1,直接输出

其实我相当于把官方题解翻译了一遍,加了点自己的东西觉得更好理解

上述证明写法非常不严谨,大家自行脑补严谨的写法

只是做了点微小的工作,谢谢大家

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a < b ? a : b;}
inline void swap(int &x, int &y){int tmp = x;x = y;y = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const int INF = 0x3f3f3f3f;
double a[10000 + 10], S, P;
int n;
bool cmp(double a, double b)
{
return a > b;
}
int main()
{
read(n);
for(int i = 1;i <= n;++ i)
scanf("%lf", &a[i]);
std::sort(a + 1, a + 1 + n, cmp);
if(a[1] == 1)
{
printf("1");
return 0;
}
P = 1, S = 0;
for(int i = 1;i <= n;++ i)
{
if(S < 1)
{
P *= 1 - a[i];
S += a[i] / (1 - a[i]);
}
}
printf("%.10lf", P * S);
return 0;
}

Codeforces 442B. Andrey and Problem的更多相关文章

  1. Codeforces 442B Andrey and Problem(贪婪)

    题目链接:Codeforces 442B Andrey and Problem 题目大意:Andrey有一个问题,想要朋友们为自己出一道题,如今他有n个朋友.每一个朋友想出题目的概率为pi,可是他能够 ...

  2. codeforces 442B B. Andrey and Problem(贪心)

    题目链接: B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input ...

  3. codeforces#253 D - Andrey and Problem里的数学知识

    这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...

  4. Codeforces Round #253 (Div. 1) B. Andrey and Problem

    B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  5. Codeforces 442B

    题目链接 B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  6. [codeforces 528]B. Clique Problem

    [codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...

  7. cf442B Andrey and Problem

    B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  8. codeforces.com/contest/325/problem/B

    http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...

  9. CodeForces 867B Save the problem

    B. Save the problem! http://codeforces.com/contest/867/problem/B time limit per test 2 seconds memor ...

随机推荐

  1. SpringBoot_04_SpringBoot对ssm的整合

    1.在SpringBoot框架下对ssm进行整合 2.搭建一个web的SpringBoot框架 2.1添加pom.xml坐标(需要加上SpringBoot对jsp的支持,和对资源文件位置的说明) &l ...

  2. Xcode 5 SVN配置

    from:http://stackoverflow.com/questions/19180718/import-a-project-in-svn-from-xcode-5/19410994#19410 ...

  3. Docker系列(四):Docker容器互联

    基于Volume的互联 为什么需要Volume docker文件系统是分层的,下面的是全部是只读的,最上面的是可写层,容器中的进程如果修改了某个文件,比如修改了下层的某个文件,其实是在最顶层复制下层文 ...

  4. tomcat mysql 练习

    [root@k8s-master tomcat_demo]# cat mysql-rc.yml apiVersion: v1 kind: ReplicationController metadata: ...

  5. mysql用户和权限

    1.创建用户 格式:grant 权限 on 数据库.* to 用户名@登录主机 identified by "密码" mysql>grant all privileges o ...

  6. <Python基础>装饰器的基本原理

    1.装饰器 所谓装饰器一般是对已经使用(上线)的函数增加功能. 但是因为一般的大公司的严格按照开放封闭原则(对扩展是开放的,对修改是封闭的),不会让你修改原本的函数. 装饰器就是在不改变原本的函数且不 ...

  7. USACO 2006 November Gold Fence Repair /// 贪心(有意思)(优先队列) oj23940

    题目大意: 输入N ( 1 ≤ N ≤ 20,000 ) :将一块木板分为n块 每次切割木板的开销为这块木板的长度,即将长度为21的木板分为13和8,则开销为21 接下来n行描述每块木板要求的长度Li ...

  8. 自动生成DTO(Sugar框架)

    step1:启动api项目 step2:使用postman工具,填上接口地址http://localhost:7788/api/automapper/AutoMapperSuper step3:表格数 ...

  9. php断点续传之文件上传与文件下载

    下载: 原理: Http头的 Range.Content-Range()未启用单点登录GerenalRequest URL: http://www.demotest.com/php/fileDownl ...

  10. react+redux+react-redux练习项目

    一,项目目录 二.1.新建pages包,在pages中新建TodoList.js: 2.新建store包,在store包中新建store.js,reducer.js,actionCreater.js, ...