time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Andrey needs one more problem to conduct a programming contest. He has n friends who are always willing to help. He can ask some of them to come up with a contest problem. Andrey knows one value for each of his fiends — the probability that this friend will come up with a problem if Andrey asks him.

Help Andrey choose people to ask. As he needs only one problem, Andrey is going to be really upset if no one comes up with a problem or if he gets more than one problem from his friends. You need to choose such a set of people that maximizes the chances of Andrey not getting upset.

Input

The first line contains a single integer n (1 ≤ n ≤ 100) — the number of Andrey's friends. The second line contains n real numbers pi (0.0 ≤ pi ≤ 1.0) — the probability that the i-th friend can come up with a problem. The probabilities are given with at most 6 digits after decimal point.

Output

Print a single real number — the probability that Andrey won't get upset at the optimal choice of friends. The answer will be considered valid if it differs from the correct one by at most 10 - 9.

Examples

Input

4

0.1 0.2 0.3 0.8

Output

0.800000000000

Input

2

0.1 0.2

Output

0.260000000000

Note

In the first sample the best strategy for Andrey is to ask only one of his friends, the most reliable one.

In the second sample the best strategy for Andrey is to ask all of his friends to come up with a problem. Then the probability that he will get exactly one problem is 0.1·0.8 + 0.9·0.2 = 0.26.

题目大意

有\(n\)个人,你可以挑出一部分人来向他们要一道题,第\(i\)个人给你题的概率为\(p_i\),你只需要一道题,多了或少了你都不高兴。问在所有的选人方案里,有且仅有一道题的最大概率是多少?

题解

官方题解很明白不是很清楚你们为什么看不懂

先考虑选出的集合$A = { p_1, p_2, p_3, \ldots , p_n } $

概率\(Ans\)为

\[Ans = \sum_{i=1}^{n} p_i \prod _{j=1}^{n}[i\neq j] \times (1-p_j)
\]

\[=\sum_{i=1}^{n}\frac{p_i}{1-p_i} \prod _{j=1}^{n}(1-p_j)
\]

\[=(\prod_{j=1}^{n}(1-p_j))\times(\sum_{i=1}^{n}\frac{p_i}{1-p_i})
\]

考虑向集合内添加一个新的元素\(p_x\),对答案的贡献为:

\[\Delta = (\prod_{j=1}^{n}(1-p_j))\times(1-p_x) \times ((\sum_{i=1}^{n}\frac{p_i}{1-p_i}) + \frac{p_x}{1-p_x})) - (\prod_{j=1}^{n}(1-p_j))\times(\sum_{i=1}^{n}\frac{p_i}{1-p_i})
\]

看上去非常乱

记\(P = \prod_{j=1}^{n}(1-p_j),S=\sum_{i=1}^{n}\frac{p_i}{1-p_i}\)

上述式子改写成

\[Ans = P \times S
\]

\[\Delta = P \times (1 - p_x) \times (S + \frac{p_x}{1-p_x}) - P \times S
\]

\[=P \times p_x \times (1 - S)
\]

发现:

引理1:唯有当\(S < 1\)时,\(x\)才会加入集合

那么对于所有满足\(S < 1\)的元素,我们加哪个更好呢?

考虑两个元素\(i,j,i\neq j\),他们的贡献差为:

\[\Delta ^{'}= \Delta_i - \Delta_j
\]

\[=P\times p_i(1 - S) - P \times p_j \times (1-S)
\]

\[=P\times (1-S)\times(p_i - p_j)
\]

由此得到:

引理2:当元素\(i\)比\(j\)更优时,当且仅当\(\Delta ^{'}> 0\),即\(p_i > p_j\)

算法不难得出:按照\(p_i\)排序,不断往里加,一直加到\((1-S) \leq 0\)为止,即为答案

接下来通过上述结论来证明算法正确的充分性,即算法的是正确答案。

考虑反证法,假设最有答案集合为\(A\),存在元素\(i,j\),满足\(i \in A,j \notin B,p_i < p_j\),那我们把\(i\)从集合\(A\)中去掉,此时一定满足\((1-S) > 0\)(不然最优答案为啥要把\(i\)加进去呢)。根据引理1我们可以把\(j\)加进去,根引理2,加入\(j\)比加入\(i\)更优,与\(A\)为最优矛盾。所以\(j\)应该加入答案。

归纳一下算法就是对的了(唔)

此外还要加个特判

因为\(p_i = 1\)的时候S就挂了。。

所以如果出现\(1\),答案就是1,直接输出

其实我相当于把官方题解翻译了一遍,加了点自己的东西觉得更好理解

上述证明写法非常不严谨,大家自行脑补严谨的写法

只是做了点微小的工作,谢谢大家

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a < b ? a : b;}
inline void swap(int &x, int &y){int tmp = x;x = y;y = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const int INF = 0x3f3f3f3f;
double a[10000 + 10], S, P;
int n;
bool cmp(double a, double b)
{
return a > b;
}
int main()
{
read(n);
for(int i = 1;i <= n;++ i)
scanf("%lf", &a[i]);
std::sort(a + 1, a + 1 + n, cmp);
if(a[1] == 1)
{
printf("1");
return 0;
}
P = 1, S = 0;
for(int i = 1;i <= n;++ i)
{
if(S < 1)
{
P *= 1 - a[i];
S += a[i] / (1 - a[i]);
}
}
printf("%.10lf", P * S);
return 0;
}

Codeforces 442B. Andrey and Problem的更多相关文章

  1. Codeforces 442B Andrey and Problem(贪婪)

    题目链接:Codeforces 442B Andrey and Problem 题目大意:Andrey有一个问题,想要朋友们为自己出一道题,如今他有n个朋友.每一个朋友想出题目的概率为pi,可是他能够 ...

  2. codeforces 442B B. Andrey and Problem(贪心)

    题目链接: B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input ...

  3. codeforces#253 D - Andrey and Problem里的数学知识

    这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...

  4. Codeforces Round #253 (Div. 1) B. Andrey and Problem

    B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  5. Codeforces 442B

    题目链接 B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  6. [codeforces 528]B. Clique Problem

    [codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...

  7. cf442B Andrey and Problem

    B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  8. codeforces.com/contest/325/problem/B

    http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...

  9. CodeForces 867B Save the problem

    B. Save the problem! http://codeforces.com/contest/867/problem/B time limit per test 2 seconds memor ...

随机推荐

  1. vue v-show指令

    demo: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  2. thinkphp switch标签

    用法: <switch name="变量" > <case value="值1" break="0或1">输出内容1 ...

  3. python使用PIL处理图片后返回给前端的坑

    一.python代码 这里有个坑,之前没有将bytes图片数据转成base64就返回到前端了,但在前端处理的时候,怎么都显示不出图片来,虽然数据拿到了,但bytes被传到前后变str了,所以怎么搞都没 ...

  4. 基于UDP协议的套接字编程

    基于udp协议的套接字编程 UDP是无链接的,先启动那一端都不会报错 UDP协议是数据报协议,发空的时候也会自带报头,因此客户端输入空,服务端也能收到 一般不用与传输大数据 虽然没有粘包问题,但是不能 ...

  5. python函数使用易错举例

    关于嵌套: 嵌套使用中,  retrun inner  ---> 返回的是函数的地址 retrun inner() :    --->  运行inner()函数   ---> 运行i ...

  6. ELK5.2+kafka+zookeeper+filebeat集群部署

    架构图 考虑到日志系统的可扩展性以及目前的资源(部分功能复用),整个ELK架构如下: 架构解读 : (整个架构从左到右,总共分为5层) 第一层.数据采集层 最左边的是业务服务器集群,上面安装了file ...

  7. JS之缓冲动画

    原素材 main.html <!DOCTYPE html> <html lang="en"> <head> <link href=&quo ...

  8. LGP5495 Dirichlet 前缀和

    题目 不是很明白为什么要叫做模板 考虑到\(a_i\)能对\(b_j\)产生贡献,当且仅当\(a_i=\prod p_k^{a_k},b_j=\prod p_k^{b_k},\forall k \ a ...

  9. ReadyAPI 教程和示例(一)

    原文:ReadyAPI 教程和示例(一) 声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 通过下图你可以快速浏览一下主要的ReadyAP ...

  10. Nodejs之路(四)—— MongoDB&MySQL

    一.MongoDB 1.1概述 MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案.MongoDB 是一个介于关系数据库和非 ...