题意:

求不相交的最小路径覆盖

思路:

连边跑二分图,匹配一条边相当于缩了一条边,答案为n-maxflow

如果是求可以相交的最小路径覆盖的话,先用Floyd跑出可达矩阵,然后所有可达的点连边跑二分图即可

代码:

这个dinic板子加边前要tot=1,否则每一对正反向流会乱掉

由于本题要输出方案,这里有两份代码,一份是跑最大流的时候记录流向,另一份是根据残余网络纪录流向

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <set>
#include <vector>
#include <ctime>
#include <map> #define fst first
#define sc second
#define pb push_back
#define mem(a, b) memset(a, b, sizeof(a))
#define lson l, mid, root << 1
#define rson mid + 1, r, root << 1 | 1
#define lc root << 1
#define rc root << 1 | 1
#define lowbit(x) ((x) & (-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PI;
typedef pair<ll, ll> PLL; const db eps = 1e-;
const int mod = 1e9 + ;
const int maxn = 4e4 + ;
const int maxm = 4e5 + ;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); int head[maxn], d[maxn]; //层
int ver[maxm], edge[maxm], Next[maxm]; // edge[i]: c for edge_i
int n, m, s, t, tot, maxflow;
queue<int> q;
int st[maxn];
void add(int x, int y, int z) {
ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot;
st[tot]=x;
ver[++tot] = x, edge[tot] = , Next[tot] = head[y], head[y] = tot;
st[tot]=y;
}
int du[maxn];
bool bfs() {
mem(d, );
while (!q.empty()) q.pop();
q.push(s);
d[s] = ;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = head[x]; i; i = Next[i]) {
if (edge[i] && !d[ver[i]]) {
q.push(ver[i]);
d[ver[i]] = d[x] + ;
if (ver[i] == t)
return true;
}
}
}
return false;
}
int nx[maxn];
int dinic(int x, int flow) {
if (x == t)
return flow;
int rest = flow, k;
for (int i = head[x]; i; i = Next[i]) {
if (edge[i] && d[ver[i]] == d[x] + ) {
k = dinic(ver[i], min(rest, edge[i]));
if (!k) {
d[ver[i]] = ;
} else {
edge[i] -= k;
edge[i ^ ] += k;
rest -= k;
}
}
}
return flow - rest;
}
int vis[maxn];
int pre[maxn];
int main() {
mem(pre, -);
mem(nx,-);
s = ;
t = ;
tot = ;
scanf("%d %d", &n, &m);
for (int i = ; i <= m; i++) {
int x, y;
scanf("%d %d", &x, &y);
x *= ;
y *= ;
add(x, y + , );
}
for (int i = ; i <= n; i++) {
add(s, i * , );
add(i * + , t, );
}
int maxflow = ;
int flow;
while (bfs()) {
while () {
flow = dinic(s, inf);
if (flow == )
break;
maxflow += flow;
}
}
for(int i = ; i <= tot; i++){
if(edge[i]==&&st[i]%==&&st[i]>=&&st[i]<=*n&&ver[i]!=s){
int x = st[i]/;
int y = (ver[i]-)/;
//printf("%d %d\n",x,y);
pre[y] = x;
nx[x] = y;
}
}
for(int i = ; i <= n; i++){
if(pre[i]==-){
int x = i;
while(x!=-){
printf("%d ", x);
x= nx[x];
}
printf("\n");
}
}
printf("%d\n", n - maxflow);
return ;
} /*
5 3
1 2 3 4 5
1 2 3
2 1 4
4 3 5
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <set>
#include <vector>
#include <ctime>
#include <map> #define fst first
#define sc second
#define pb push_back
#define mem(a, b) memset(a, b, sizeof(a))
#define lson l, mid, root << 1
#define rson mid + 1, r, root << 1 | 1
#define lc root << 1
#define rc root << 1 | 1
#define lowbit(x) ((x) & (-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PI;
typedef pair<ll, ll> PLL; const db eps = 1e-;
const int mod = 1e9 + ;
const int maxn = 4e2 + ;
const int maxm = 4e5 + ;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); int head[maxn], d[maxn]; //层
int ver[maxm], edge[maxm], Next[maxm]; // edge[i]: c for edge_i
int n, m, s, t, tot, maxflow;
queue<int> q;
void add(int x, int y, int z) {
ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot; ver[++tot] = x, edge[tot] = , Next[tot] = head[y], head[y] = tot;
}
int du[maxn];
bool bfs() {
mem(d, );
while (!q.empty()) q.pop();
q.push(s);
d[s] = ;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = head[x]; i; i = Next[i]) {
if (edge[i] && !d[ver[i]]) {
q.push(ver[i]);
d[ver[i]] = d[x] + ;
if (ver[i] == t)
return true;
}
}
}
return false;
}
int nx[maxn];
int dinic(int x, int flow) {
if (x == t)
return flow;
int rest = flow, k;
for (int i = head[x]; i; i = Next[i]) {
if (edge[i] && d[ver[i]] == d[x] + ) {
k = dinic(ver[i], min(rest, edge[i]));
if (!k) {
d[ver[i]] = ;
} else {
nx[x] = ver[i];
edge[i] -= k;
edge[i ^ ] += k;
rest -= k;
}
}
}
return flow - rest;
}
int vis[maxn];
int pre[maxn];
int main() {
mem(pre, -);
s = ;
t = ;
tot = ;
scanf("%d %d", &n, &m);
for (int i = ; i <= m; i++) {
int x, y;
scanf("%d %d", &x, &y);
x *= ;
y *= ;
add(x, y + , );
}
for (int i = ; i <= n; i++) {
add(s, i * , );
add(i * + , t, );
}
int maxflow = ;
int flow;
while (bfs()) {
while () {
flow = dinic(s, inf);
if (flow == )
break;
maxflow += flow;
}
}
for (int i = ; i <= n; i++) {
pre[(nx[i * ] - ) / ] = i;
} for (int i = ; i <= n; i++) {
if (vis[i])
continue;
if (pre[i] == -) {
int x = i;
while (x) {
vis[x] = ;
printf("%d ", x);
x = (nx[x * ] - ) / ;
}
printf("\n");
}
}
printf("%d\n", n - maxflow);
return ;
} /*
5 3
1 2 3 4 5
1 2 3
2 1 4
4 3 5
*/

Loj 6002 最小路径覆盖(最大流)的更多相关文章

  1. LibreOJ 6002 最小路径覆盖(最大流)

    题解:最小路径覆盖=总点数减去最大匹配数,拆点,按照每条边前一个点连源点,后一个点连汇点跑最大流,即可跑出最大匹配数,然后减一减就可以了~ 代码如下: #include<queue> #i ...

  2. [SDOI2010][bzoj1927] 星际竞速 [最小路径覆盖+费用流]

    题面 传送门 思路 仔细观察题目要求的东西,发现就是求一个最小路径覆盖,只不过可以跳跃(就是那个鬼畜的超级跳跃) 那么就直接上最小路径覆盖模版 对每个点,拆成两个点$X_i$和$Y_i$,建立超级源超 ...

  3. 洛谷 P2764 LibreOJ 6002 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  4. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  5. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  6. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  7. 【刷题】LOJ 6002 「网络流 24 题」最小路径覆盖

    题目描述 给定有向图 \(G = (V, E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 \(P\) 的一条路上,则称 \(P\) 是 ...

  8. LibreOJ #6002. 「网络流 24 题」最小路径覆盖

    #6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  9. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

随机推荐

  1. array_diff 大bug

    $aa = array("手机号", "first","keyword1","keyword2","keywo ...

  2. Redis-CAP定理和BASE理论(二)

    CAP理论概述 1998 年来自柏克莱加州大学的计算机科学家 埃里克.布鲁尔(Eric Brewer) 提出分布式系统的三个基本指标:Consistency(一致性).Availability(可用性 ...

  3. Web及网络基础学习(一)

    ---恢复内容开始--- 2019.10.16 1.TCP.IP分层  应用层.网络层.传输层.数据链路层 2.各层讲解 应用层 决定了向用户提供应用服务时通信的活动.例如FTP(File Trans ...

  4. Collections 工具类

    针对 List 集合的方法 排序 sort 如果集合元素为基本数据类型,采用快排:对于集合元素为引用类型,采用归并排序. //对指定 List 集合的元素按照自然排序 void sort(List&l ...

  5. BFT-SMaRt:用Java做节点间的可靠信道

    目录 一.引子 二.名词统一 1. 节点id 2. 节点 3. 本地节点 4. 配置域 5. TTP 6. 陌生域 三.节点服务类 四.节点通信系统概览 五.节点通信层准备 1. 创建socket服务 ...

  6. 曹工说Spring Boot源码(9)-- Spring解析xml文件,到底从中得到了什么(context命名空间上)

    写在前面的话 相关背景及资源: 曹工说Spring Boot源码(1)-- Bean Definition到底是什么,附spring思维导图分享 曹工说Spring Boot源码(2)-- Bean ...

  7. Adaboost和随机森林

    在集成学习中,主要分为bagging算法和boosting算法.随机森林属于集成学习(Ensemble Learning)中的bagging算法. Bagging和Boosting的概念与区别该部分主 ...

  8. oracle的一些简单语法

    1.创建主键自增: --创建序列 create sequence seq_tb_user minvalue nomaxvalue start with increment by nocycle --一 ...

  9. Activiti工作流引擎开发系列

    Activiti工作流引擎开发系列-01 作者:Jesai 没有伞的孩子,只能光脚奔跑! 前言: 初次接触工作流这个概念是自从2014年11月份开始,当时是由于我的毕业设计需要,还记得当时我毕业设计的 ...

  10. java jdk9的特性 jshell

    1.进入 jshell 2.推出 /exit() 和python的解释器用法差不多