HDU3836 Equivalent Sets (Tarjan缩点+贪心)
题意:
给你一张有向图,问你最少加多少条边这张图强连通
思路:
缩点之后,如果不为1个点,答案为出度为0与入度为0的点的数量的最大值
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
//#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional>
#include<unordered_map> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 5e4+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); vector<int>g[maxn];
int f[maxn];
int color[maxn],dfn[maxn],low[maxn],stack[maxn],vis[maxn],cnt[maxn];
int in[maxn],out[maxn];
int top,n,m,sum,ans;
int deep = ;
void tarjan(int u){
dfn[u]=++deep;
low[u]=deep;
vis[u]=;
stack[++top]=u;
int sz=g[u].size();
for(int i=;i<sz;i++){
int v=g[u][i];
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else{
if(vis[v]){
low[u]=min(low[u],low[v]);
}
}
}
if(dfn[u]==low[u]){
color[u]=++sum;
vis[u]=;
while(stack[top]!=u){
color[stack[top]]=sum;
vis[stack[top--]]=;
}
top--;
}
return;
}
PI edge[maxn];
vector<int>v[maxn];
int find(int x){
return f[x]==x?x:f[x]=find(f[x]);
}
void dfs(int x, int fa){
if(x!=fa){
int t1 = find(x);
int t2 = find(fa);
f[t1]=t2;
}
if(v[x].size()==&&x!=fa&&vis[x]==){vis[x]=;ans++;}
for(int i = ; i <(int)v[x].size(); i++){
int y = v[x][i];
dfs(y,fa);
}
}
int main() {
while(~scanf("%d %d", &n, &m)){
deep=;
top=ans=sum=;
for(int i = ; i <= n; i++){
f[i]=i;
color[i]=low[i]=dfn[i]=stack[i]=vis[i]=cnt[i]=;
g[i].clear();
v[i].clear();in[i]=out[i]=;
}
for(int i = ; i <= m; i++){
int x,y;
scanf("%d %d", &x, &y);
edge[i] = make_pair(x,y);
g[x].pb(y);
}
for(int i = ; i <= n; i++){
if(!dfn[i])tarjan(i);
}
/*for(int i = 1; i <= n; i++){
printf("--%d %d %d\n",i,color[i],low[i]);
}*/
//suo dian
for(int i = ; i <= n; i++)vis[i]=;
for(int i = ; i <= m; i++){
int x = edge[i].fst;
int y = edge[i].sc;
x = color[x];
y = color[y];
if(x!=y){
v[x].pb(y);
in[y]++;
out[x]++;
}
}
int In=;
int Ou=;
for(int i = ; i <= sum; i++){
if(in[i]==)In++;
if(out[i]==)Ou++;
}
int ans = max(In,Ou);
if(ans==)ans--;
printf("%d\n",ans); }
return ;
}
/*
4 3
1 2
2 3
4 3 4 3
1 2
2 3
3 4 8 6
1 2
1 3
1 5
3 4
3 6
6 7 6 5
1 2
2 3
3 1
3 5
1 4 2 2
1 2
2 1 3 3
1 2
2 3
1 3 7 6
1 2
2 3
1 3
4 5
4 6
4 7 4 5
1 2
1 3
1 4
2 3
3 4 4 5
1 2
1 3
1 4
2 3
4 3 3 1
1 2
*/
HDU3836 Equivalent Sets (Tarjan缩点+贪心)的更多相关文章
- hdu 3836 Equivalent Sets trajan缩点
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- 20190716NOIP模拟赛T2 通讯(tarjan缩点+贪心)
题目描述 “这一切都是命运石之门的选择.” 试图研制时间机器的机关SERN截获了中二科学家伦太郎发往过去的一条短 信,并由此得知了伦太郎制作出了电话微波炉(仮). 为了掌握时间机器的技术,SERN总部 ...
- 【洛谷P5008 逛庭院】tarjan缩点+贪心
既然没有题解,那么我就来提供给一份. -- 首先我们看到数据范围.妈耶!数据这么大,一开始还想用个DP来做,但是看着就不行,那么根据这个数据范围,我们大致可以猜到这道题的算法是一个贪心,那么我们怎么贪 ...
- hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- [tarjan] hdu 3836 Equivalent Sets
主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...
- hdu 3836 Equivalent Sets
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...
- hdu 3836 Equivalent Sets(强连通分量--加边)
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu——3836 Equivalent Sets
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- 【HDOJ2767】【Tarjan缩点】
http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/O ...
随机推荐
- java数据结构之常用排序算法
冒泡排序 private void maopao(int arr[]) { for (int i = 0; i < arr.length; i++) { for (int j = 0; j &l ...
- AntDesign getFieldDecorator 获取自定义组件的值
AntDesign getFieldDecorator 获取自定义组件的值 1.自定义或第三方的表单控件,也可以与 Form 组件一起使用.只要该组件遵循以下的约定: (1)提供受控属性 value ...
- java序列化(一)
今天我们来探讨一下java的序列化与反序列化.之前对此一直有概念,但是并没有真正的去测试.大家都知道,所谓的序列化就是把java代码读取到一个文件中,反序列化就是从文件中读取出对象.在网络传输过程中, ...
- Redis内存碎片清理
当Redis中清理了大量的Key之后原先Redis申请的内存(used_memory_rss)将继续持有而不会释放,此时查看内存信息将会看到存在大量的内存碎片.那么,Redis的内存碎片可以清理么,该 ...
- 从操作系统层面理解Linux下的网络IO模型
I/O( INPUT OUTPUT),包括文件I/O.网络I/O. 计算机世界里的速度鄙视: 内存读数据:纳秒级别. 千兆网卡读数据:微妙级别.1微秒=1000纳秒,网卡比内存慢了千倍. 磁盘读数据: ...
- 1、Vue 实战-入门篇
先决条件:需要 Node.js . npm 基础. 如果没有基础看先看下面简单的两点介绍. 1.npm 命令介绍. 1.所有命令 -h 可以查看.也可以从官网查 docs,结果如下. --help ...
- python的input()函数
# input()函数 # 作用: 获取用户的输入,返回输入的内容 ,也可以用于暂停程序的运行 # 影响: 调用此函数,程序会立即暂停,等待用户输入 # 注意:input()的返回值是一个字符串 # ...
- Java 多线程安全问题简单切入详细解析
线程安全 假如Java程序中有多个线程在同时运行,而这些线程可能会同时运行一部分的代码.如果说该Java程序每次运行的结果和单线程的运行结果是一样的,并且其他的变量值也都是和预期的结果是一样的,那么就 ...
- 【转】oracle条件子句执行顺序
Oracle WHERE条件执行顺序:ORACLE采用自下而上的顺序解析WHERE子句 1.据此那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾例如:SELECT … FROM EMP E ...
- Vue 编程式的导航
1.应用场景 在同一路由的情况下,不同的参数之间进行切换 注意:别忘记初始化路由页面 2.用法 a.定义方法 b.实现方法 c.初始化路由页面 3.案例 <template> <di ...