\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2}(3)\]


\(\Large\mathbf{Proof:}\)
We use the Abel's rearrangement over the \(N\)-th partial sum of the series,
\[\begin{align*}\sum\limits_{n=1}^{N}\frac{\left(H_n^{(2)}\right)^2}{n^2} &= \sum\limits_{n=1}^{N-1} \left[\left(H_n^{(2)}\right)^2-\left(H_{n+1}^{(2)}\right)^2\right]\sum\limits_{k=1}^{n}\frac{1}{k^2}+\left(H_N^{(2)}\right)^2\sum\limits_{k=1}^{N} \frac{1}{k^2}\\&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=0}^{N-1} \frac{\left(H_n^{(2)}+H_{n+1}^{(2)}\right)H_n^{(2)}}{(n+1)^2}\\
&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=1}^{N} \frac{\left(2H_n^{(2)}-\dfrac{1}{n^2}\right)\left(H_n^{(2)}-\dfrac{1}{n^2}\right)}{n^2}\\&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=1}^{N} \frac{1}{n^2}\left(2\left(H_n^{(2)}\right)^2-3\frac{H_n^{(2)}}{n^2}+\frac{1}{n^4}\right)\\
&= \frac{1}{3}\left(H_N^{(2)}\right)^3+\sum\limits_{n=1}^{N}\frac{H_n^{(2)}}{n^4}-\frac{1}{3}\sum\limits_{n=1}^{N}\frac{1}{n^6}\end{align*}\]
I.e.,\(\displaystyle \sum\limits_{n=1}^{\infty}\frac{\left(H_n^{(2)}\right)^2}{n^2} = \frac{1}{3}\zeta(2)^3+\sum\limits_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4}-\frac{1}{3}\zeta(6)\)
M.N.S.E showed in this answer one way of dealing with \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4} = \zeta(3)^2 - \frac{1}{3}\zeta(6)\). Combining the results lead to,
\[\Large\boxed{\displaystyle \sum\limits_{n=1}^{\infty} \frac{\left(H_n^{(2)}\right)^2}{n^2} = \color{blue}{\zeta(3)^2 + \frac{19}{24}\zeta(6)}}\]

Euler Sums系列(三)的更多相关文章

  1. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  2. Euler Sums系列(五)

    \[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...

  3. Euler Sums系列(一)

    \[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...

  4. Euler Sums系列(四)

    \[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...

  5. Euler Sums系列(二)

    \[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...

  6. 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家

    系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...

  7. Web 开发人员和设计师必读文章推荐【系列三十】

    <Web 前端开发精华文章推荐>2014年第9期(总第30期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  8. MyBatis学习系列三——结合Spring

    目录 MyBatis学习系列一之环境搭建 MyBatis学习系列二——增删改查 MyBatis学习系列三——结合Spring MyBatis在项目中应用一般都要结合Spring,这一章主要把MyBat ...

  9. MySQL并发复制系列三:MySQL和MariaDB实现对比

    http://blog.itpub.net/28218939/viewspace-1975856/ 并发复制(Parallel Replication) 系列三:MySQL 5.7 和MariaDB ...

随机推荐

  1. 题解【洛谷P1347】排序

    题目描述 一个不同的值的升序排序数列指的是一个从左到右元素依次增大的序列,例如,一个有序的数列\(A,B,C,D\) 表示\(A<B,B<C,C<D\).在这道题中,我们将给你一系列 ...

  2. (转)多进程 & 多线程的区别与适用场景

    转自:http://www.cnblogs.com/huntfor/p/4021327.html 关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”, ...

  3. map-apply-applymap

    In [1]: import warnings import math import pandas as pd import numpy as np import matplotlib warning ...

  4. python正则非贪婪模式

    上一篇python正则匹配次数大家应该也发现了,除了?其他匹配次数规则都是尽可能多的匹配 那如果只想匹配1次怎么办呢,这就是正则中非贪婪模式的概念了 原理就是利用?与其他匹配次数规则进行组合 单个匹配 ...

  5. Day1 面向对象编程与Java核心类

    this变量 在方法内部,可以使用一个隐含的变量this,它始终指向当前实例.如果没有命名冲突,可以省略this. 但是,如果有局部变量和字段重名,那么局部变量优先级更高,就必须加上this. 构造方 ...

  6. mysql 隔离性与隔离级别

    提到事务,你肯定不陌生,和数据库打交道的时候,我们总是会用到事务.最经典的例子就是转账,你要给朋友小王转 100 块钱,而此时你的银行卡只有 100 块钱. 转账过程具体到程序里会有一系列的操作,比如 ...

  7. asp.net 大文件上传配置

    <system.web> <httpRuntime requestValidationMode=" ></httpRuntime> <!--单位:K ...

  8. CSS - div居中在屏幕中(水平居中 + 垂直居中)

    方法一代码 <div> <h1>404 Not Found.</h1> </div> <style> div { text-align: c ...

  9. 普及C组第二题(8.1)

    2000. [2015.8.6普及组模拟赛]Leo搭积木(brick) 题目: Leo是一个快乐的火星人,总是能和地球上的OIers玩得很high.         2012到了,Leo又被召回火星了 ...

  10. Go 语言 fmt.Sprintf (格式化输出)

    Printf().Sprintf().Fprintf() 函数的区别用法是什么? 都是输出格式化字符串,只是输出到的目标不一样: Printf() 是把格式化字符串输出到标准到标准输出(一般是屏幕,可 ...