\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2}(3)\]


\(\Large\mathbf{Proof:}\)
We use the Abel's rearrangement over the \(N\)-th partial sum of the series,
\[\begin{align*}\sum\limits_{n=1}^{N}\frac{\left(H_n^{(2)}\right)^2}{n^2} &= \sum\limits_{n=1}^{N-1} \left[\left(H_n^{(2)}\right)^2-\left(H_{n+1}^{(2)}\right)^2\right]\sum\limits_{k=1}^{n}\frac{1}{k^2}+\left(H_N^{(2)}\right)^2\sum\limits_{k=1}^{N} \frac{1}{k^2}\\&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=0}^{N-1} \frac{\left(H_n^{(2)}+H_{n+1}^{(2)}\right)H_n^{(2)}}{(n+1)^2}\\
&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=1}^{N} \frac{\left(2H_n^{(2)}-\dfrac{1}{n^2}\right)\left(H_n^{(2)}-\dfrac{1}{n^2}\right)}{n^2}\\&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=1}^{N} \frac{1}{n^2}\left(2\left(H_n^{(2)}\right)^2-3\frac{H_n^{(2)}}{n^2}+\frac{1}{n^4}\right)\\
&= \frac{1}{3}\left(H_N^{(2)}\right)^3+\sum\limits_{n=1}^{N}\frac{H_n^{(2)}}{n^4}-\frac{1}{3}\sum\limits_{n=1}^{N}\frac{1}{n^6}\end{align*}\]
I.e.,\(\displaystyle \sum\limits_{n=1}^{\infty}\frac{\left(H_n^{(2)}\right)^2}{n^2} = \frac{1}{3}\zeta(2)^3+\sum\limits_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4}-\frac{1}{3}\zeta(6)\)
M.N.S.E showed in this answer one way of dealing with \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4} = \zeta(3)^2 - \frac{1}{3}\zeta(6)\). Combining the results lead to,
\[\Large\boxed{\displaystyle \sum\limits_{n=1}^{\infty} \frac{\left(H_n^{(2)}\right)^2}{n^2} = \color{blue}{\zeta(3)^2 + \frac{19}{24}\zeta(6)}}\]

Euler Sums系列(三)的更多相关文章

  1. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  2. Euler Sums系列(五)

    \[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...

  3. Euler Sums系列(一)

    \[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...

  4. Euler Sums系列(四)

    \[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...

  5. Euler Sums系列(二)

    \[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...

  6. 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家

    系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...

  7. Web 开发人员和设计师必读文章推荐【系列三十】

    <Web 前端开发精华文章推荐>2014年第9期(总第30期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  8. MyBatis学习系列三——结合Spring

    目录 MyBatis学习系列一之环境搭建 MyBatis学习系列二——增删改查 MyBatis学习系列三——结合Spring MyBatis在项目中应用一般都要结合Spring,这一章主要把MyBat ...

  9. MySQL并发复制系列三:MySQL和MariaDB实现对比

    http://blog.itpub.net/28218939/viewspace-1975856/ 并发复制(Parallel Replication) 系列三:MySQL 5.7 和MariaDB ...

随机推荐

  1. 源码安装python 报错,openssl: error while loading shared libraries: libssl.so.1.1

    在执行openssl version出现如下错误: openssl: error while loading shared libraries: libssl.so.1.1: cannot open ...

  2. [IOI2005]河流

    Description Luogu3354 Solution 一道树形dp的题. 首先考虑转移,很简单,就是这个点做不做伐木场.为了方便转移,我们定义状态为\(f_{i,j,k}\)表示点\(i\)及 ...

  3. 【做题笔记】洛谷P1036 选数

    作为一个 DFS 初学者这题真的做得很惨...其实窝学 DFS 一年多了,然后一开始就学不会最近被图论和数据结构打自闭后才准备好好学一学233 一开始,直接套框架,于是就有 #include < ...

  4. html滑动

    $('html, body').animate({scrollTop: 1500}, 'fast');

  5. php preg正则表达式的组成部分

    定界符号 : 多种都可以,常用为// 原子 : 最小的一个匹配单位 (放在定界符中),在一个正则表达式中,至少要有一个原子 1,打印字符(a-z A-Z 0-9 ~!@#$%^&*()_+.. ...

  6. 【网易官方】极客战记(codecombat)攻略-地牢-橱柜里的骷髅

    关卡连接: https://codecombat.163.com/play/level/cupboards-of-kithgard 谁知道什么样的恐怖事情潜伏在 Kithgard 的橱柜里? 简介: ...

  7. 1.BMap(百度地图)第二次加载显示不全

    问题: bmap第一次加载显示没问题: 第二次 再次加载这个页面时,地图的显示出现了问题: . 分析问题出现原因:你要确保dom创建后且处于显示状态(即display不能为none)才能再次初始化地图 ...

  8. Drawer 侧边栏、以及侧边栏内 容布局

    一.Flutter Drawer 侧边栏 在 Scaffold 组件里面传入 drawer 参数可以定义左侧边栏,传入 endDrawer 可以定义右侧边栏.侧边栏默认是隐藏的,我们可以通过手指滑动显 ...

  9. 多种语言输出helloworld

  10. Docker - 命令 - docker network

    概述 docker network 命令 背景 newwork 是 docker 的一种资源 经常会使用 需要整理命令 1. 引入 概述 docker run 时, 将容器端口映射到宿主机 场景 启动 ...