Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.Each of x, y, z and r is positive and is less than 100.0.The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000 30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000 5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553

Sample Output

20.000
0.000
73.834

裸prim,要求修一条连通各个空间站的轨道,空间站为球形,若两个空间站半径之和大于其球心距离(两球相交),两个空间站距离为0,若半径之和大于其球心距离,则要修的轨道距离为球心距离减去半径之和。如此构造完连通图后直接prim即可

ac代码

 #include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <iomanip>
#define MIN(x,y) ((x)>(y))?(y):(x)
#define MAX(x,y) ((x)>(y))?(x):(y) using namespace std; const int inf = 0x3f3f3f3f;
const double dinf = 0xffffffff;
const int vspot = ;
const int espot = ;
int N;
double ans;
double graph[vspot][vspot];
double dist[vspot];
double x[vspot], y[vspot], z[vspot], r[vspot];
bool vis[vspot]; void prim()
{
int k;
double sum = ;
memset( vis, false, sizeof(vis) );
vis[] = true;
for( int i = ; i <= N; i++ )
dist[i] = graph[][i]; for( int i = ; i <= N; i++ )
{
double mincost = dinf;
for ( int j = ; j <= N; j++ )
if ( !vis[j] && dist[j] < mincost )
{
mincost = dist[j];
k = j;
} vis[k] = true;
sum += mincost; for ( int j = ; j <= N; j++ )
if ( !vis[j] && dist[j] > graph[k][j] )
dist[j] = graph[k][j];
}
ans = sum;
} double getDist( int i, int j )
{
if( i == j )
return (double)0.0;
double a1 = (x[i]-x[j])*(x[i]-x[j]);
double a2 = (y[i]-y[j])*(y[i]-y[j]);
double a3 = (z[i]-z[j])*(z[i]-z[j]);
return sqrt(a1+a2+a3);
} int main()
{
while( ~scanf( "%d", &N ) )
{
memset( graph, , sizeof(graph) );
if(N==)
break;
for( int i = ; i <= N; i++ )
scanf( "%lf %lf %lf %lf", &x[i], &y[i], &z[i], &r[i] ); for( int i = ; i <= N; i++ )
for( int j = i; j <= N; j++ )
{
double temp = getDist( i, j );
if( r[i]+r[j] < temp )
graph[i][j] = graph[j][i] = temp - r[i] - r[j];
else
graph[i][j] = graph[j][i] = (double)0.0;
} prim();
cout.setf(ios::fixed);
cout << setprecision() << ans << endl;
}
return ;
}
 

POJ 2031 Building a Space Station (prim裸题)的更多相关文章

  1. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  3. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. Prim POJ 2031 Building a Space Station

    题目传送门 题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度. 分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和 ...

随机推荐

  1. Linux的CentOS上如何安装nginx

    1. 安装nginx前,首先要装好gcc和g++环境: 2. 在centOS上装nginx,需要PCRE.zlib和ssl的支持,出ssl外其他都需要从其官网上下载好,上传至服务器: 3. 接着将上传 ...

  2. php完整表单实例

    PHP - 在表单中确保输入值 在用户点击提交按钮后,为确保字段值是否输入正确,我们在HTML的input元素中插添加PHP脚本, 各字段名为: name, email, 和 website. 在评论 ...

  3. SpringBoot学习笔记(七):SpringBoot使用AOP统一处理请求日志、SpringBoot定时任务@Scheduled、SpringBoot异步调用Async、自定义参数

    SpringBoot使用AOP统一处理请求日志 这里就提到了我们Spring当中的AOP,也就是面向切面编程,今天我们使用AOP去对我们的所有请求进行一个统一处理.首先在pom.xml中引入我们需要的 ...

  4. Django之模板语言(三)------>自定义filter

    1.自定义filter: 1.在app01下面新建一个templatetags的python package包. 如果没有app01的话,可以通过命令行在manage中进行创建:python mana ...

  5. https证书加密

    对称加密 浏览器向服务端发送请求时,服务端首先给浏览器发送一个秘钥,浏览器用秘钥对传输的数据进行加密后发送给浏览器,浏览器拿到加密后的数据使用秘钥进行解密 非对称加密 服务端通过rsa算法生成一个公钥 ...

  6. nulls_hlist原理 和 tcp连接查找

    原文链接 http://abcdxyzk.github.io/blog/2018/09/28/kernel-sk_lookup/

  7. MapReduce 图解流程超详细解答(2)-【map阶段】

    接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mappe ...

  8. Leetcode145. Binary Tree Postorder Traversal二叉树的后序遍历

    给定一个二叉树,返回它的 后序 遍历. 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 递归: class Solution { public: vector<int> res; ve ...

  9. HZOI20190814 B 不等式

    不等式 题目大意:求解满足$L \leqslant(S×x)mod M\leqslant R$的x最小正整数解,无解输出-1 几种部分分: $L==R$,就是$ex_gcd$; 解在$1e6$以内:搜 ...

  10. php四种文件加载语句

    https://mp.weixin.qq.com/s/Wsn4grDRxVIgMfu__E_oWQ 1.include 2.require 3.include_once 4.require_once ...