[bzoj2152] [洛谷P2634] 聪聪可可
Description
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画 \(n\) 个“点”,并用 \(n-1\) 条“边”把这 \(n\) 个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input
输入的第1行包含1个正整数n。后面 \(n-1\) 行,每行3个整数 $ x、y、w$,表示 \(x\) 号点和 \(y\) 号点之间有一条边,上面的数是 \(w\)。
Output
以即约分数形式输出这个概率(即“\(a/b\)”的形式,其中 \(a\) 和 \(b\) 必须互质。如果概率为1,输出“1/1”)。
Sample Input
5
1 2 1
1 3 2
1 4 1
2 5 3
Sample Output
13/25
HINT
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。
【数据规模】
对于 \(100 \%\) 的数据,\(n \leq 20000\)。
想法
点分治经典题。
\(gtedeep\) 中所有路径长度模3,统计余0、1、2的路径条数,记为 \(t[0],t[1],t[2]\)
然后 \(cal\) 中 \(t[1]*t[2]*2+t[0]*t[0]\) 便是选端点使路径长度为3倍数的情况数
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 20005;
struct node{
int v,len;
node *next;
}pool[N*2],*h[N];
int cnt;
void addedge(int u,int v,int l){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->next=h[u];h[u]=p; p->len=l;
q->v=u;q->next=h[v];h[v]=q; q->len=l;
}
int n,sum,rt;
int size[N],mx[N],vis[N];
void getroot(int u,int f){
int v;
size[u]=1; mx[u]=0;
for(node *p=h[u];p;p=p->next){
if(vis[v=p->v] || v==f) continue;
getroot(v,u);
size[u]+=size[v]; mx[u]=max(mx[u],size[v]);
}
mx[u]=max(mx[u],sum-size[u]);
if(mx[u]<mx[rt]) rt=u;
}
int d[3];
void getdeep(int u,int f,int c) {
int v;
d[c%3]++; size[u]=1;
for(node *p=h[u];p;p=p->next){
if(vis[v=p->v] || v==f) continue;
getdeep(v,u,c+p->len);
size[u]+=size[v];
}
}
int cal(int u,int c){
d[0]=d[1]=d[2]=0;
getdeep(u,0,c);
return d[0]*d[0]+d[1]*d[2]*2; //想清楚
}
int ans;
void work(int u){
int v;
vis[u]=1;
ans+=cal(u,0);
for(node *p=h[u];p;p=p->next){
if(vis[v=p->v]) continue;
ans-=cal(v,p->len);
rt=0; sum=size[v]; getroot(v,u);
work(rt);
}
}
int gcd(int a,int b) { return b ? gcd(b,a%b) : a ; }
int main()
{
int u,v,l;
scanf("%d",&n);
for(int i=1;i<n;i++) {
scanf("%d%d%d",&u,&v,&l);
addedge(u,v,l);
}
mx[0]=N;
rt=0; sum=n; getroot(1,0);
work(rt);
int g=gcd(n*n,ans);
printf("%d/%d\n",ans/g,n*n/g);
return 0;
}
[bzoj2152] [洛谷P2634] 聪聪可可的更多相关文章
- Bzoj2152/洛谷P2634 聪聪可可(点分治)
题面 Bzoj 洛谷 题解 点分治套路走一波,考虑\(calc\)函数怎么写,存一下每条路径在\(\%3\)意义下的路径总数,假设为\(tot[i]\)即\(\equiv i(mod\ 3)\),这时 ...
- 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...
- 洛谷 P2634 [国家集训队]聪聪可可 解题报告
P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一 ...
- 洛谷 P2634 [国家集训队]聪聪可可-树分治(点分治,容斥版) +读入挂+手动O2优化吸点氧才过。。。-树上路径为3的倍数的路径数量
P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...
- 洛谷P2634 [国家集训队]聪聪可可 (点分治)
题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...
- AC日记——【模板】点分治(聪聪可可) 洛谷 P2634
[模板]点分治(聪聪可可) 思路: 点分治: (感谢灯神) 代码: #include <bits/stdc++.h> using namespace std; #define maxn 2 ...
- 洛谷 P2634 BZOJ 2152 【模板】点分治(聪聪可可)
题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...
- 洛谷 P2634 聪聪可可
题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...
- 洛谷-P2634 [国家集训队]聪聪可可 点分治
Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...
随机推荐
- 修改github上的项目语言类型
当在github上上传一个项目时,可能会出现一个问题就是项目代码类型是自动生成的,可能与我们实际项目代码种类不匹配,此时就需要修改项目语言类型了. 由于无法直接更改,所以用到此方法: 在你的项目根目录 ...
- APK签名替换检测
APK二次打包的危害 APK二次打包是Android应用安全风险中的一部分, 一般是通过反编译工具向应用中插入广告代码与相关配置,再在第三方应用市场.论坛发布.打包党对移动App带来的危害有以下几种: ...
- 【53.57%】【codeforces 610C】Harmony Analysis
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 30分钟全方位了解阿里云Elasticsearch(附公开课完整视频)
摘要: 阿里云Elasticsearch提供100%兼容开源Elasticsearch的功能,以及Security.Machine Learning.Graph.APM等商业功能,致力于数据分析.数据 ...
- 写时拷贝COW(copy-on-write)
写时拷贝技术是通过"引用计数"实现的,在分配空间的时候多分配4个字节,用来记录有多少个指针指向块空间,当有新的指针指向这块空间时,引用计数加一,当要释放这块空间时,引用计数 ...
- 【Composer】PHP开发者必须了解!
Composer是一个非常流行的PHP包依赖管理工具,已经取代PEAR包管理器,对于PHP开发者来说掌握Composer是必须的. 对于使用者来说Composer非常的简单,通过简单的一条命令将需要的 ...
- 020 ceph作openstack的后端存储
一.使用ceph做glance后端 1.1 创建用于存储镜像的池 [root@serverc ~]# ceph osd pool create images 128 128 pool 'images ...
- 基于ambassador实现K8S灰度发布
为什么需要灰度发布 灰度发布(又名金丝雀发布)是指在黑与白之间,能够平滑过渡的一种发布方式.在其上可以进行A/B testing,即让一部分用户继续用产品特性A,一部分用户开始用产品特性B,如果用户对 ...
- 【python小随笔】celery异步任务与调用返回值
s1.py(配置任务文件) from celery import Celery import time my_task = Celery("tasks", broker=" ...
- Mysql备份与恢复(1)---物理备份
数据库对企业来说最重要的莫过于其中的数据,所以做好数据库的备份是一个不可或缺的工作.数据库及时备份可以帮助我们在数据库出现异常宕机时及时的使用备份数据进行恢复工作,将因为数据库宕机产生的影响降低到最小 ...