import numpy as np

from matplotlib import  pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.neural_network import MLPClassifier def creat_data(n):
'''
创建线性可分数据集 :param n: 正例样本的个数(同时也是负例样本的个数)
:return: 返回一个线性可分数据集,数据集大小为 2*n
'''
np.random.seed(1)
x_11=np.random.randint(0,100,(n,1)) # 第一组:第一维坐标值
x_12=np.random.randint(0,100,(n,1,))# 第一组:第二维坐标值
x_13=20+np.random.randint(0,10,(n,1,))#第一组: 第三维坐标值
x_21=np.random.randint(0,100,(n,1)) # 第二组:第一维坐标值
x_22=np.random.randint(0,100,(n,1)) # 第二组:第二维坐标值
x_23=10-np.random.randint(0,10,(n,1,)) # 第二组:第三维坐标值 new_x_12=x_12*np.sqrt(2)/2-x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_13=x_12*np.sqrt(2)/2+x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_22=x_22*np.sqrt(2)/2-x_23*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_23=x_22*np.sqrt(2)/2+x_23*np.sqrt(2)/2## 沿第一维轴旋转45度 plus_samples=np.hstack([x_11,new_x_12,new_x_13,np.ones((n,1))]) # 拼接成正例数据集
minus_samples=np.hstack([x_21,new_x_22,new_x_23,-np.ones((n,1))]) # 拼接成负例数据集
samples=np.vstack([plus_samples,minus_samples]) # 拼接成完整数据集
np.random.shuffle(samples) # 混洗数据
return samples def creat_data_no_linear(n):
'''
创建线性不可分数据集 :param n: 正例样本的个数(同时也是负例样本的个数)
:return: 返回一个线性不可分数据集,数据集大小为 2*n
'''
np.random.seed(1)
x_11=np.random.randint(0,100,(n,1))# 第一组:第一维坐标值
x_12=np.random.randint(0,100,(n,1,))# 第一组:第二维坐标值
x_13=10+np.random.randint(0,10,(n,1,))#第一组: 第三维坐标值
x_21=np.random.randint(0,100,(n,1))# 第二组:第一维坐标值
x_22=np.random.randint(0,100,(n,1))# 第二组:第二维坐标值
x_23=20-np.random.randint(0,10,(n,1,)) # 第二组:第三维坐标值 new_x_12=x_12*np.sqrt(2)/2-x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_13=x_12*np.sqrt(2)/2+x_13*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_22=x_22*np.sqrt(2)/2-x_23*np.sqrt(2)/2## 沿第一维轴旋转45度
new_x_23=x_22*np.sqrt(2)/2+x_23*np.sqrt(2)/2## 沿第一维轴旋转45度 plus_samples=np.hstack([x_11,new_x_12,new_x_13,np.ones((n,1))])# 拼接成正例数据集
minus_samples=np.hstack([x_21,new_x_22,new_x_23,-np.ones((n,1))])# 拼接成负例数据集
samples=np.vstack([plus_samples,minus_samples])# 拼接成完整数据集
np.random.shuffle(samples) # 混洗数据
return samples def plot_samples(ax,samples):
'''
绘制样本点 :param ax: 绘制图形所在的 Axes
:param samples: 样本数据集
:return: None
'''
Y=samples[:,-1] # 标记信息
position_p=Y==1 ## 正类位置
position_m=Y==-1 ## 负类位置
# 绘制正类样本点
ax.scatter(samples[position_p,0],samples[position_p,1],samples[position_p,2],marker='+',label='+',color='b')
# 绘制负类样本点
ax.scatter(samples[position_m,0],samples[position_m,1],samples[position_m,2],marker='^',label='-',color='y')
def run_plot_samples():
'''
绘制线性可分数据集 :return: None
'''
fig=plt.figure()
ax=Axes3D(fig)
data=creat_data(100) # 产生线性可分数据集
plot_samples(ax,data)
ax.legend(loc='best')
plt.show() run_plot_samples()

def run_plot_samples_no_linear():
'''
绘制线性不可分数据集 :return: None
'''
data=creat_data_no_linear(100)# 产生线性不可分数据集
fig=plt.figure()
ax=Axes3D(fig)
plot_samples(ax,data)
ax.legend(loc='best')
plt.show() run_plot_samples_no_linear()

def perceptron(train_data,eta,w_0,b_0):
'''
感知机的原始算法 :param train_data: 训练数据集
:param eta: 学习率
:param w_0: 初始权重向量
:param b_0: 初始的 b
:return: 一个元组,依次为:最终的权重向量,最终的 b 值,迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的标记
length= train_data.shape[0] #样本集大小
w=w_0
b=b_0
step_num=0
while True:
i=0
while(i< length): ## 遍历一轮样本集中的所有的样本点
step_num+=1
'''
当应用于线性不可分数据集时,用下面4行代替上面的 step_num+=1 这一行。如果不这么做,那么当用于线性
不可分数据集时,迭代永远不会停止。
step_num+=1
if step_num>=10000000:
print("failed!,step_num =%d"%step_num)
return
'''
x_i=x[i].reshape((x.shape[1],1)) # 变成列向量,因为需要执行 np.dot 函数
y_i=y[i]
if y_i*(np.dot(np.transpose(w),x_i)+b) <=0: # 该点是误分类点
w=w+eta*y_i*x_i # 梯度下降
b=b+eta*y_i # 梯度下降
break # 执行下一轮筛选
else:#该点不是误分类点,选取下一个样本点
i=i+1
if(i== length): #没有误分类点,结束循环
break
return (w,b,step_num) def creat_hyperplane(x,y,w,b):
'''
创建分离超平面 :param x: 分离超平面上的点的x坐标组成的数组
:param y: 分离超平面上的点的y坐标组成的数组
:param w: 超平面的法向量,它是一个列向量
:param b: 超平面的截距
:return: 分离超平面上的点的z坐标组成的数组
'''
return (-w[0][0]*x-w[1][0]*y-b)/w[2][0] # w0*x+w1*y+w2*z+b=0
def run_perceptron():
'''
对线性可分数据集执行感知机的原始算法并绘制分离超平面
'''
data=creat_data(100) #产生线性可分数据集
eta,w_0,b_0=0.1,np.ones((3,1),dtype=float),1 # 初始化 学习率、权重、 b
w,b,num=perceptron(data,eta,w_0,b_0) # 执行感知机的原始形式
### 绘图
fig=plt.figure()
plt.suptitle("perceptron")
ax=Axes3D(fig) ### 绘制样本点
plot_samples(ax,data) ## 绘制分离超平面
x=np.linspace(-30,100,100) # 分离超平面的 x坐标数组
y=np.linspace(-30,100,100) # 分离超平面的 y坐标数组
x,y=np.meshgrid(x,y) # 划分网格
z=creat_hyperplane(x,y,w,b) # 分离超平面的 z坐标数组
ax.plot_surface(x, y, z, rstride=1, cstride=1,color='g',alpha=0.2) ax.legend(loc="best")
plt.show() run_perceptron()

def perceptron_nolinear(train_data,eta,w_0,b_0):
'''
感知机的原始算法 :param train_data: 训练数据集
:param eta: 学习率
:param w_0: 初始权重向量
:param b_0: 初始的 b
:return: 一个元组,依次为:最终的权重向量,最终的 b 值,迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的标记
length= train_data.shape[0] #样本集大小
w=w_0
b=b_0
step_num=0
while True:
i=0
while(i< length): ## 遍历一轮样本集中的所有的样本点
step_num+=1
if step_num>=10000000:
print("failed!,step_num =%d"%step_num)
return
x_i=x[i].reshape((x.shape[1],1)) # 变成列向量,因为需要执行 np.dot 函数
y_i=y[i]
if y_i*(np.dot(np.transpose(w),x_i)+b) <=0: # 该点是误分类点
w=w+eta*y_i*x_i # 梯度下降
b=b+eta*y_i # 梯度下降
break # 执行下一轮筛选
else:#该点不是误分类点,选取下一个样本点
i=i+1
if(i== length): #没有误分类点,结束循环
break
return (w,b,step_num) def creat_hyperplane(x,y,w,b):
'''
创建分离超平面 :param x: 分离超平面上的点的x坐标组成的数组
:param y: 分离超平面上的点的y坐标组成的数组
:param w: 超平面的法向量,它是一个列向量
:param b: 超平面的截距
:return: 分离超平面上的点的z坐标组成的数组
'''
return (-w[0][0]*x-w[1][0]*y-b)/w[2][0] # w0*x+w1*y+w2*z+b=0
def run_perceptron_no_linear():
'''
对线性不可分数据集执行感知机的元素算法
'''
data=creat_data_no_linear(100)#产生线性不可分数据集
perceptron_nolinear(data,eta=0.1,w_0=np.zeros((3,1)),b_0=0) run_perceptron_no_linear()

def creat_w(train_data,alpha):
'''
根据训练数据集和 alpha向量 创建 权重向量 :param train_data: 训练数据集
:param alpha: alpha 向量
:return: 权重向量
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的分类
N= train_data.shape[0] #样本集大小
w=np.zeros((x.shape[1],1))
for i in range(0,N):
w=w+alpha[i][0]*y[i]*(x[i].reshape(x[i].size,1))
return w
def perceptron_dual(train_data,eta,alpha_0,b_0):
'''
感知机的对偶形式算法 :param train_data: 训练数据集
:param eta: 学习率
:param alpha_0: 初始的 alpha 向量
:param b_0: 初始的 b 值
:return: 一个元组,依次为:最终的alpha 向量、最终的 b 值、迭代次数
'''
x=train_data[:,:-1] # x 数据
y=train_data[:,-1] # 对应的分类
length= train_data.shape[0] #样本集大小
alpha=alpha_0
b=b_0
step_num=0
while True:
i=0
while(i< length):
step_num+=1
x_i=x[i].reshape((x.shape[1],1)) # 变形为列向量,因为需要调用 np.dot
y_i=y[i]
w=creat_w(train_data,alpha)
z=y_i*(np.dot(np.transpose(w),x_i)+b)
if z <=0: # 该点是误分类点
alpha[i][0]+=eta # 梯度下降
b+=eta*y_i # 梯度下降
break # 梯度下降了,从头开始,执行下一轮筛选
else:
i=i+1 #该点不是误分类点,选取下一个样本点
if(i== length ): #没有误分类点,结束循环
break
return (alpha,b,step_num) def run_perceptron_dual():
'''
对线性可分数据集执行感知机的原始算法和对偶形式算法,并绘制分离超平面
'''
data=creat_data(100)
eta,w_0,b_0=0.1,np.ones((3,1),dtype=float),1
w_1,b_1,num_1=perceptron(data,eta,w_0,b_0) ##执行原始形式的算法
alpha,b_2,num_2=perceptron_dual(data,eta=0.1,alpha_0=np.zeros((data.shape[0]*2,1)),
b_0=0) # 执行对偶形式的算法
w_2=creat_w(data,alpha) print("w_1,b_1",w_1,b_1)
print("w_2,b_2",w_2,b_2) ## 绘图
fig=plt.figure()
plt.suptitle("perceptron")
ax=Axes3D(fig) ### 绘制样本点
plot_samples(ax,data) ## 绘制分离超平面
x=np.linspace(-30,100,100) # 分离超平面的 x坐标数组
y=np.linspace(-30,100,100) # 分离超平面的 y坐标数组
x,y=np.meshgrid(x,y) # 划分网格
z=creat_hyperplane(x,y,w_1,b_1) # 原始形式算法的分离超平面的 z坐标数组
z_2=creat_hyperplane(x,y,w_2,b_2) # 对偶形式算法的分离超平面的 z坐标数组
ax.plot_surface(x, y, z, rstride=1, cstride=1,color='g',alpha=0.2)
ax.plot_surface(x, y, z_2, rstride=1, cstride=1,color='c',alpha=0.2)
ax.legend(loc="best")
plt.show() run_perceptron_dual()

def test_eta(data,ax,etas,w_0,alpha_0,b_0):
'''
测试学习率对于感知机两种形式算法的收敛速度的影响 :param data: 训练数据集
:param ax: Axes实例,负责绘制图形
:param etas: 候选的学习率的值组成的列表
:param w_0: 原始算法用到的初始权重向量
:param alpha_0: 对偶形式用到的初始 alpha 向量
:param b_0: 初始 b 值
:return: None
'''
nums1=[]
nums2=[]
for eta in etas:
_,_,num_1=perceptron(data,eta,w_0=w_0,b_0=b_0) # 获取原始形式算法的迭代次数
_,_,num_2=perceptron_dual(data,eta=0.1,alpha_0=alpha_0,b_0=b_0) # 获取对偶形式算法的迭代次数
nums1.append(num_1)
nums2.append(num_2)
ax.plot(etas,np.array(nums1),label='orignal iteraton times')
ax.plot(etas,np.array(nums2),label='dual iteraton times') def run_test_eta():
fig=plt.figure()
fig.suptitle("perceptron")
ax=fig.add_subplot(1,1,1)
ax.set_xlabel(r'$\eta$') data=creat_data(20) # 创建线性可分数据集
etas=np.linspace(0.01,1,num=25,endpoint=False)
w_0,b_0,alpha_0=np.ones((3,1)),0,np.zeros((data.shape[0],1))
test_eta(data,ax,etas,w_0,alpha_0,b_0) ax.legend(loc="best",framealpha=0.5)
plt.show() run_test_eta()

吴裕雄 python 机器学习——人工神经网络与原始感知机模型的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  2. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  4. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  7. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  8. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. Network Initialization: Fan-in and Fan-out

    https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py @weak_script def _calculate_fan_in_a ...

  2. DataGrid 的DataSource重新加载数据

    DataGrid 的DataSource重新加载数据,若直接重新给DataSource赋值是没有效果的,若只是修改原有数据中的单个值,此方法有效,但是针对完全不一样的数据直接重新赋值的方式是无效的,此 ...

  3. JFinalSwagger插件

    个人博客 地址:http://www.wenhaofan.com/article/20190304101839 jfinal使用swagger的极简插件 码云地址:https://gitee.com/ ...

  4. javax.naming.NameNotFoundException: Name jdbc is not bound in this Context

    这个错误的原因是没有项目使用到了Tomcat中配置的数据源(但是你本地没有配置),关于什么是JNDI看这篇文章就够了® 今天导入一个项目(比较老的),在本地运行时报错: Cannot resolve ...

  5. Ueditor百度编辑器中 setContent()方法的使用

    百度编辑器Ueditor所提供的setContent()方法作用是:设置或者改变编辑器里面的文字内容或html内容 函数说明:setContent(string,boolean); 参数string ...

  6. MAC MAMP集成环境安装 PHP 扩展

    MAC MAMP集成环境安装 PHP扩展 开发环境中,对于需要维护很多 WEB 站点,以及可能会使用到很多不同的 PHP 版本,集成环境比较好用,在MAC 上 MAMP 集成环境是比较好用的,但是在安 ...

  7. pom.xml文件中dependency标签的scope子标签

    1.最近整合了公司的一个项目A,而A又依赖项目B,项目B中pom.xml中有一个依赖的<scope>provided</scope>,查了一下,原来provided属性,jar ...

  8. 【Unity|C#】基础篇(3)——类(class)/ 接口(interface)

    [学习资料] <C#图解教程>(第4~7章):https://www.cnblogs.com/moonache/p/7687551.html 电子书下载:https://pan.baidu ...

  9. 使用在react hooks+antd ListView简单实现移动端长列表功能

    import React, { useState, useEffect } from "react" import { ListView } from "antd-mob ...

  10. 《NVM-Express-1_4-2019.06.10-Ratified》学习笔记(8.8)-- Reservations

    8.8 Reservations 预订 NVMe的reservation预订功能,用于让两个或多个主机能够协调配合的访问共享namespace.使用这些功能的协议和方式超出了本规格说明书的范围.对这些 ...