2019牛客多校第七场E Find the median 离散化+线段树维护区间段
Find the median
题意
刚开始集合为空,有n次操作,每次操作往集合里面插入[L[i],R[i]]的值,问每次操作后中位数是多少
分析
由于n比较大,并且数可以达到1e9,我们无法通过权值线段树来进行操作,那么怎么办呢?题目中还有什么性质?插入的值是一段一段的,那么我们是不是能从这些段中入手?维护这些段,怎么维护呢,如果[1,2][2,5]这两段有一个点重合那该怎么办,此时我们可以用一个常规操作把r加1进行分段,什么意思呢例如上例我们分成[1,2][2,3][3,6]那么我们对[1,2]进行操作,那么只要对第一段进行操作即可,如果我们对[2,5]进行操作,那么只要对第二段和第三段进行操作即可,这样就把区间分开来了,相当于把公共点抽出来了放到了两个段中,这样就不会导致本来只想对一段进行操作,结果相邻的段也被操作了的尴尬情形。起始这种操作在线段树中不少见,刷模板题的时候就有过,目的也相同,只是补完才想起来?
还有因为分段的问题,段树会需要n2的点,也就是需要开n8的空间,RE了1W年,我傻了。
#include<bits/stdc++.h>
#define pb push_back
#define F first
#define S second
#define pii pair<int,int>
#define mkp make_pair
using namespace std;
typedef long long ll;
const int maxn=8e5+4;
ll sum[maxn<<2],lazy[maxn<<2];
ll x[maxn],y[maxn],c[maxn*3];
int id1[maxn],id2[maxn];
ll a1,a2,b1,b2,c1,c2,m1,m2;
int sz;
inline void build(int o,int l,int r){
lazy[o]=sum[o]=0;
if(l==r)return ;
int mid=l+r>>1;
build(o<<1,l,mid);
build(o<<1|1,mid+1,r);
}
inline void push_down(int o,int l,int r){
if(lazy[o]){
int mid=l+r>>1;
sum[o<<1]+=lazy[o]*(c[mid+1]-c[l]);
sum[o<<1|1]+=lazy[o]*(c[r+1]-c[mid+1]);
lazy[o<<1]+=lazy[o];
lazy[o<<1|1]+=lazy[o];
lazy[o]=0;
}
}
inline void update(int o,int l,int r,int x,int y)
{
if(x<=l&&y>=r){
sum[o]+=(c[r+1]-c[l]);
lazy[o]++;
}
else {
int mid=l+r>>1;
push_down(o,l,r);
if(mid>=x)update(o<<1,l,mid,x,y);
if(mid<y)update(o<<1|1,mid+1,r,x,y);
sum[o]=sum[o<<1|1]+sum[o<<1];
}
}
inline ll query(int o,int l,int r,ll v){
if(l==r){
int cishu=sum[o]/(c[r+1]-c[l]);
return c[l]+(v-1)/cishu;
}
else {
int mid=l+r>>1;
push_down(o,l,r);
if(sum[o<<1]>=v)return query(o<<1,l,mid,v);
else return query(o<<1|1,mid+1,r,v-sum[o<<1]);
}
}
int main(){
int n;
scanf("%d",&n);
scanf("%lld%lld%lld%lld%lld%lld",&x[1],&x[2],&a1,&b1,&c1,&m1);
scanf("%lld%lld%lld%lld%lld%lld",&y[1],&y[2],&a2,&b2,&c2,&m2);
for(int i=3;i<=n;i++){
x[i]=(1ll*a1*x[i-1]+1ll*b1*x[i-2]+c1)%m1;
y[i]=(1ll*a2*y[i-1]+1ll*b2*y[i-2]+c2)%m2;
}
int zz=0;
for(int i=1;i<=n;i++){
x[i]++,y[i]++;
if(x[i]>y[i])swap(x[i],y[i]);
c[++zz]=x[i];
c[++zz]=y[i]+1;
}
sort(c+1,c+1+zz);
sz=unique(c+1,c+1+zz)-(c+1);
for(int i=1;i<=n;i++){
id1[i]=lower_bound(c+1,c+1+sz,x[i])-c;
id2[i]=lower_bound(c+1,c+1+sz,y[i]+1)-c;
}
sz--;
build(1,1,sz);
ll cnt=0;
for(int i=1;i<=n;i++){
update(1,1,sz,id1[i],id2[i]-1);
cnt+=(y[i]-x[i]+1);
printf("%lld\n",query(1,1,sz,(cnt+1)/2));
}
return 0;
}
2019牛客多校第七场E Find the median 离散化+线段树维护区间段的更多相关文章
- 2019牛客多校第七场E Find the median 权值线段树+离散化
Find the median 题目链接: https://ac.nowcoder.com/acm/contest/887/E 题目描述 Let median of some array be the ...
- 2019牛客训练赛第七场 C Governing sand 权值线段树+贪心
Governing sand 题意 森林里有m种树木,每种树木有一定高度,并且砍掉他要消耗一定的代价,问消耗最少多少代价可以使得森林中最高的树木大于所有树的一半 分析 复杂度分析:n 1e5种树木,并 ...
- 牛客多校第三场 G Removing Stones(分治+线段树)
牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...
- Find the median(2019年牛客多校第七场E题+左闭右开线段树)
题目链接 传送门 题意 每次往集合里面添加一段连续区间的数,然后询问当前集合内的中位数. 思路 思路很好想,但是卡内存. 当时写的动态开点线段树没卡过去,赛后机房大佬用动态开点过了,\(tql\). ...
- 2019牛客多校第七场H Pair 数位DP
题意:给你一个3个数A, B, C问有多少对pair(i, j),1 <= i <= A, 1 <= j <= B, i AND j > C或 i XOR j < ...
- 2019牛客多校第七场C-Governing sand(线段树+枚举)
Governing sand 题目传送门 解题思路 枚举每一种高度作为最大高度,则需要的最小花费的钱是:砍掉所有比这个高度高的树的所有花费+砍掉比这个高度低的树里最便宜的m棵树的花费,m为高度低的里面 ...
- 2019牛客多校第七场 F Energy stones 树状数组+算贡献转化模拟
Energy stones 题意 有n块石头,每块有初始能量E[i],每秒石头会增长能量L[i],石头的能量上限是C[i],现有m次时刻,每次会把[s[i],t[i]]的石头的能量吸干,问最后得到了多 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 牛客多校第七场 C Bit Compression 思维
链接:https://www.nowcoder.com/acm/contest/145/C来源:牛客网 A binary string s of length N = 2n is given. You ...
随机推荐
- 将String类型的json数据转换为真正的json数据
问题 在做JavaWeb项目的时候,我们经常需要将Java对象转化为Json数据格式响应到前台页面,但是转化完成之后,看着是Json类型的数据格式,但实际上是字符串类型,在这里说两个方法将String ...
- nginx 反向代理及 https 证书配置
nginx 反向代理及 https 证书配置 author: yunqimg(ccxtcxx0) 1. 编译安装nginx 从官网下载 nginx源码, 并编译安装. ./configure --pr ...
- WebGL_0004:带贴图的材质透明效果
在材质中: "blendType": 2,
- Nginx模块之ngx_http_proxy_module
ngx_http_proxy_module模块: 示例: location / { proxy_pass http://localhost:8000; proxy_set_header Host $h ...
- Vasya and a Tree CodeForces - 1076E
很好的思维 转化为对树上的深度差分 回朔的思想 对查询离线 #include<iostream> #include<cstdio> #include<cmath> ...
- matplotlib调整子图大小
因为子图太多而导致每个子图很小,很密,如何调整
- CF1205E Expected Value Again
题意 题意翻译 对于一个字符串\(s\),我们定义其美丽值\(f(s)\)为满足下列两个条件的正整数\(i\)的个数: \(1\leq i<|s|\) \(s\)长度为\(i\)的前缀与后缀相等 ...
- ubuntu 部署Django项目+uwsgi+Nginx
1.部署框架 Nginx负责静态资源请求,并且把无法处理的请求转发至uwsgi处理 2.安装并配置Nginx 2.1安装 apt-get install nginx (如果安装失败请先升级apt-ge ...
- 0级搭建类013-CentOS 8.x 安装
CentOS 8 操作系统安装
- Python标准库之logging模块
很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,loggin ...