Online Judge:bzoj1742,bzoj1694

Label:区间Dp

题目描述

John养了一只叫Joseph的奶牛。一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草。我们可以认为草地是一个数轴上的一些点。Joseph看到这些草非常兴奋,它想把它们全部吃光。于是它开始左右行走,吃草。John和Joseph开始的时候站在p位置。Joseph的移动速度是一个单位时间一个单位距离。不幸的是,草如果长时间不吃,就会腐败。我们定义一堆草的腐败值是从Joseph开始吃草到吃到这堆草的总时间。Joseph可不想吃太腐败的草,它请John帮它安排一个路线,使得它吃完所有的草后,总腐败值最小。John的数学很烂,她不知道该怎样做,你能帮她么?

输入

第一行两个整数N,p。表示有N处草地,奶牛初始位置为p。(\(N<=1000\))

接下来N行每行输入一个整数x,表示该处草地的坐标为x。(\(1<=x,p<=1,000,000\))​

输出

输出一个整数,表示最小总腐败值。

样例

Input

4 10
1
9
11
19

Output

44

Hint

OUTPUT DETAILS:

Bessie can follow this route:

  • start at position 10 at time 0
  • move to position 9, arriving at time 1
  • move to position 11, arriving at time 3
  • move to position 19, arriving at time 11
  • move to position 1, arriving at time 29

    giving her a total staleness of 1+3+11+29 = 44. There are other routes

    with the same total staleness, but no route with a smaller one.

题解

大致题意就是,你的初始坐标为\(x\),你要去数轴上的\(n\)个点,问你到达所有点的时间总和最小是多少。

直接贪心不可行,所以考虑dp。

坐标什么的先离散了再说:),两点的距离可以直接预处理出来\(dis[i][j]=abs(a[i]-a[j])\)。

接下来考虑如何dp。

关注到一个性质,如果到目前为止,奶牛吃过最左的草堆编号为\(l\),吃过最右的草堆编号为\(r\),则如果奶牛不是傻它肯定把\([l,r]\)的草堆都吃过了,因为它吃草速度是瞬时的,都经过了肯定要嫖一口。

那很明显应该是个区间dp了。

不难定义出状态\(f[0/1][i][j]\)表示已经吃完\([i,j]\)的草了,且现在在左端i(0),在右端j(1),所需的最少时间和

转移根据意义模拟一下就好了,假如我现在从区间的某端\(k\)转移到某点\(l\),则花去时间为\(dis[k][l]\),在这个时间内除了区间\([i,j]\),其他所有草堆的腐败值都增加了1。

具体转移顺序可以打个记搜。也可以直接循环转移——枚举区间长度,再枚举左端点。然后对于这道题内部再分类讨论一下处于左右端位置即可。时间复杂度为\(O(N^2)\)。

代码如下

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1005,INF=0x3f3f3f3f;
int a[N],dis[N][N],f[N][N][2];
int n;
inline void Do(int &x,int y){(x>y)&&(x=y);}
signed main(){
int x;
scanf("%lld%lld",&n,&x);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
a[++n]=x;
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)dis[i][j]=abs(a[i]-a[j]);
int st=lower_bound(a+1,a+n+1,x)-a; memset(f,0x3f,sizeof(f));
f[st][st][0]=f[st][st][1]=0;
for(int i=1;i<=n;i++)for(int l=1;l+i-1<=n;l++){
int r=l+i-1;
if(f[l][r][0]<INF){
if(l!=1)Do(f[l-1][r][0],f[l][r][0]+dis[l-1][l]*(n-i));
if(r!=n)Do(f[l][r+1][1],f[l][r][0]+dis[l][r+1]*(n-i));
}
if(f[l][r][1]<INF){
if(l!=1)Do(f[l-1][r][0],f[l][r][1]+dis[r][l-1]*(n-i));
if(r!=n)Do(f[l][r+1][1],f[l][r][1]+dis[r][r+1]*(n-i));
}
} printf("%lld\n",min(f[1][n][0],f[1][n][1]));
}

update

本题的几个升级版

1.SDOI2008 Sue的小球

2.Baltic2009 beetle

[USACO2005 nov] Grazing on the Run【区间Dp】的更多相关文章

  1. BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )

    dp... dp( l , r , k )  , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...

  2. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  3. 【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp

    题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋,它想把它们全部吃 ...

  4. bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】

    挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...

  5. [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742

    分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...

  6. BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草

    数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值. 好题!看起来水水的实际易错! 显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中 ...

  7. BZOJ1742[Usaco2005 nov]Grazing on the Run

    Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...

  8. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  9. [Baltic2009]beetle【区间Dp】

    Online Judge:Bzoj1761 Label:区间Dp 题目描述 在一条直线上有N个点,每个点M升水. 一个虫子在坐标轴0点上,它每个单位时间移动一格,每个点的水每单位时间消失1升. 问虫子 ...

随机推荐

  1. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  2. [Nowcoder] 保护

    题意:... 思路: \(LCA\)乱搞+启发式合并(堆) #include <bits/stdc++.h> using namespace std; const int maxn = 2 ...

  3. Spring-Security (学习记录二)--修改为自己的登录页面

    目录 1.修改spring-security.xml配置文件 2.增加login.jsp页面 3.重启项目即可看到效果 1.修改spring-security.xml配置文件 <!-- auto ...

  4. AsyncAwait 学习

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  5. D.Country Meow 最小球覆盖 三分套三分套三分 && 模拟退火

    // 2019.10.3 // 练习题:2018 ICPC 南京现场赛 D Country Meow 题目大意 给定空间内 N 个点,求某个点到 N 个点的距离最大值的最小值.   思路 非常裸的最小 ...

  6. 什么是css块级元素和内联元素

    CSS文档流与块级元素(block).内联元素(inline),文档流这个概念理解了它,一堆CSS布局的理论都 变得易于理解,并且体会到CSS这套设计的合理性所在. 文档流 将窗体自上而下分成一行行, ...

  7. Interesting HDU - 5785 回文树

    题意: 找出所有[i,j]为回文串[j+1,k]也为回文串的i*k乘积之和. 题解: 设sum1[i] 为正着插入,到 i 的所有回文串的起始位置的前缀和,sum2[i] 表示反正插入的前缀和 ans ...

  8. 【转】详解tomcat的连接数与线程池

    对tomcat线程池.Connector的BIO.NIO解析的很透彻的一篇文章. 原文链接:https://www.cnblogs.com/kismetv/p/7806063.html 前言 在使用t ...

  9. swt java 内嵌ActiveX控件

    这里用的是SWT/JFace开发application中SWT自带的org.eclipse.swt.ole.win32 包可以支持内嵌OLE和ActiveX. 具体用法如下: //创建一个OleFra ...

  10. CentOS 7 下配置 Nginx + PHP7.1 + MariaDB 以及 Laravel 框架

    <!doctype html> CentOS 7 下配置 Nginx + PHP7.1 + MariaDB 以及 Laravel 框架.mdhtml {overflow-x: initia ...