Piotr found a magical box in heaven. Its magic power is that if you place any red balloon inside it
then, after one hour, it will multiply to form 3 red and 1 blue colored balloons. Then in the next hour,
each of the red balloons will multiply in the same fashion, but the blue one will multiply to form 4 blue
balloons. This trend will continue indefinitely.
  The arrangements of the balloons after the 0-th, 1-st, 2-nd and 3-rd hour are depicted in the
following diagram.
  As you can see, a red balloon in the cell (i, j) (that is i-th row and j-th column) will multiply to
produce 3 red balloons in the cells (i ∗ 2 − 1, j ∗ 2 − 1), (i ∗ 2 − 1, j ∗ 2), (i ∗ 2, j ∗ 2 − 1) and a blue
balloon in the cell (i ∗ 2, j ∗ 2). Whereas, a blue balloon in the cell (i, j) will multiply to produce 4 blue
balloons in the cells (i ∗ 2 − 1, j ∗ 2 − 1), (i ∗ 2 − 1, j ∗ 2), (i ∗ 2, j ∗ 2 − 1) and (i ∗ 2, j ∗ 2). The grid size
doubles (in both the direction) after every hour in order to accommodate the extra balloons.
  In this problem, Piotr is only interested in the count of the red balloons; more specifically, he would
like to know the total number of red balloons in all the rows from A to B after K-th hour.
Input
  The first line of input is an integer T (T < 1000) that indicates the number of test cases. Each case
contains 3 integers K, A and B. The meanings of these variables are mentioned above. K will be in
the range [0, 30] and 1 ≤ A ≤ B ≤ 2K.
Output
  For each case, output the case number followed by the total number of red balloons in rows [A, B] after
K-th hour.
Sample Input
3
0 1 1
3 1 8
3 3 7
Sample Output
Case 1: 1
Case 2: 27
Case 3: 14

解题思路:

  以f(k,i)表示第k小时时前i行的红色气球数,则有如下递归表达式:

  f(k,i) = 2*f(k-1,i)                ,i<=2^(k-1)

      或= 3^(k-1)+f(k-1,i-2^(k-1))     ,i>2^(k-1)

注意:数据要用long long 类型

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <assert.h>
using namespace std;
typedef long long LL;
LL C(int k){
LL ans=;
for(int i=;i<k;i++)
ans*=;
return ans;
}
LL f(int k, int i){
//assert(<=i&&i<=(<<k));
if(i<=) return ;
if(k==) return ; if(i<=(<<(k-))) return *f(k-,i);
else return *C(k-)+f(k-,i-(<<(k-)));
}
int main(int argc, const char * argv[]) {
int T;
scanf("%d",&T);
int kase =;
while(T--){
printf("Case %d: ",kase++);
int k,A,B;
scanf("%d%d%d",&k,&A,&B);
printf("%lld\n",f(k,B)-f(k,A-));
}
return ;
}

12627 - Erratic Expansion——[递归]的更多相关文章

  1. Uva 12627 Erratic Expansion(递归)

    这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球. 我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的.在研读了例题上给出的提示后豁然开朗(顺便吐 ...

  2. uva 12627 - Erratic Expansion(递归求解)

    递归的边界条件写的多了--不是必需写呢么多的.. 不明确可共同探讨~ #include<cstdio> #include<iostream> #include<cmath ...

  3. UVA - 12627 Erratic Expansion(奇怪的气球膨胀)(递归)

    题意:问k小时后,第A~B行一共有多少个红气球. 分析:观察图可发现,k小时后,图中最下面cur行的红气球个数满足下式: (1)当cur <= POW[k - 1]时, dfs(k, cur) ...

  4. UVa 12627 Erratic Expansion - 分治

    因为不好复制题目,就出给出链接吧: Vjudge传送门[here] UVa传送门[here] 请仔细看原题上的那幅图,你会发现,在时间t(t > 0),当前的气球构成的一幅图,它是由三个时间为( ...

  5. UVA 12627 - Erratic Expansion

    一个红球能够分裂为3个红球和一个蓝球. 一个蓝球能够分裂为4个蓝球. 分裂过程下图所看到的: 设当前状态为k1.下一状态为k2. k1的第x行红球个数 * 2 ⇒ k2第2*x行的红球个数. k1的第 ...

  6. UVA - 12627 Erratic Expansion 奇怪的气球膨胀 (分治)

    紫书例题p245 Piotr found a magical box in heaven. Its magic power is that if you place any red balloon i ...

  7. 【数形结合】Erratic Expansion

    [UVa12627]Erratic Expansion 算法入门经典第8章8-12(P245) 题目大意:起初有一个红球,每一次红球会分成三红一蓝,蓝球会分成四蓝(如图顺序),问K时的时候A~B行中有 ...

  8. UVa 12627 (递归 计数 找规律) Erratic Expansion

    直接说几个比较明显的规律吧. k个小时以后,红气球的个数为3k. 单独观察一行: 令f(r, k)为k个小时后第r行红气球的个数. 如果r为奇数,f(r, k) = f((r+1)/2, k-1) * ...

  9. 【uva 12627】Erratic Expansion(算法效率--递推)

    题意:初始1个红气球,每小时后,1个红气球会变成3个红气球和1个蓝气球,而1个蓝气球会变成4个蓝气球.问经过N小时后,第L~R行一共有多少个红气球. 解法:问行数就定义f[i][j]表示 i 小时后前 ...

随机推荐

  1. 基于spring-boot的测试桩设计--几种常见的controller

    第一种:通过@RequestBody,直接将请求体映射到对象 //@RequestBody @RequestMapping(value = "addUser", method = ...

  2. MySQL数据库操作语句(cmd环境运行)

    一.开启MySQL服务器 1,  通过windows提供的服务管理器来完成 windows键+R 输入: services.msc 2.在本地服务中打开其服务 3.在DOC命令行下 net stop ...

  3. 微信小程序分析见解

    前两天朋友圈都快被小程序给刷爆了: 对于小程序这方面,  由于没有公测的资格.所以翻阅了许许多多的资料,来了解一下小程序: 微信小程序: 小程序是一种不需要下载安装即可使用的应用,它实现了应用&quo ...

  4. 【JZOJ4784】【NOIP2016提高A组模拟9.15】Map

    题目描述 输入 输出 样例输入 4 4 2 1 2 2 3 3 2 3 4 1 2 1 4 样例输出 14 数据范围 样例解释 upd:保证原图连通. "不相交路径"的定义为不存在 ...

  5. 使用 Swift 构建自定义的ActivityIndicator View

    目前在自己的个人项目里,已经开始使用Swift去编写代码.这篇文章把项目中自己设计的一个ActivityIndicator View展示给大家. 在开始之前,我们先看看最终的效果,如下图: 我建议大家 ...

  6. 用var 变量=函数名 方式调用函数时如何传值的问题

    通过:xmlhttp.onreadystatechange= function(){FuncName(param)};orxmlhttp.onreadystatechange= new Functio ...

  7. oracle Sql语句分类

    dml语句:数据操作语句[insert,update,delete] ddl语句:数据定义语言[create table,drop table] dql语句:数据查询语句[select] dtl语句: ...

  8. SDUT-2139_从起始点到目标点的最短步数(BFS)

    数据结构实验之图论五:从起始点到目标点的最短步数(BFS) Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 在古老的魔兽 ...

  9. linux中$@,$*,$0,$$,$?参数的含义

    $# 是传给脚本的参数个数 $ 是脚本本身的名字 $ 是传递给该shell脚本的第一个参数 $ 是传递给该shell脚本的第二个参数 $@ 是传给脚本的所有参数的列表 $* 是以一个单字符串显示所有向 ...

  10. 在WPF中使用谷歌地图和高德地图

    原文:在WPF中使用谷歌地图和高德地图 在桌面软件开发中可能会遇到这样的需求:显示地图. 常用的地图API有Google Map和高德地图.二者都提供了各种平台的API. 为了方便集成,本文使用Jav ...