P1967 货车运输

题面

题目描述

\(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 \(q\) 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

第一行有两个用一个空格隔开的整数 \(n,m\) ,表示 \(A\) 国有 \(n\) 座城市和 \(m\) 条道路。

接下来 \(m\) 行每行 \(3\) 个整数 \(x, y, z\) ,每两个整数之间用一个空格隔开,表示从 \(x\) 号城市到 \(y\) 号城市有一条限重为 \(z\) 的道路。注意: \(x\) 不等于 \(y\) ,两座城市之间可能有多条道路

接下来一行有一个整数 \(q\) ,表示有 \(q\) 辆货车需要运货。

接下来 \(q\) 行,每行两个整数 \(x,y\) ,之间用一个空格隔开,表示一辆货车需要从 \(x\) 城市运输货物到 \(y\) 城市,注意: \(x\) 不等于 \(y\)

输出格式:

共有 \(q\) 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出 \(-1\) 。

输入输出样例

输入样例:

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3

输出样例:

3
-1
3

说明

对于 $30 % $ 的数据, \(0<n<1,000,0<m<10,000,0<q<1,000\) ;

对于 $60 % $ 的数据, \(0<n<1,000,0<m<50,000,0<q<1,000\) ;

对于 $100 % $ 的数据, \(0<n<10,000,0<m<50,000,0<q<30,000,0 \leq z \leq 100,000\) 。

思路

七月份的时候刚做这道题,用的是最大生成树+树链剖分。今天为了写[NOI2018]归程,把这道题当作了 \(Kruskal\) 重构树的板子题,在这里讲解一下 \(Kruskal\) 重构树的写法。

在 \(Kruskal\) 算法的过程中,如果要在 \(x,y\) 两节点之间连边,那么就把并查集中 \(x,y\) 的父节点分别连向一个新节点,这个新节点有一个权值,该点权为这条边的长度。也就是说这样子做:

sort(edge,edge+m);
for(int i=1;i<=n;i++) f[i]=i;
for(int i=0;i<m;i++)
{
int fx=fd(edge[i].u),fy=fd(edge[i].v);
if(fx!=fy)
{
a[++n]=edge[i].d;
f[fx]=f[fy]=f[n]=n;
add_edge(fx,n),add_edge(fy,n);
}
}

这样子建出来的树有以下特点:

  • 该树共有 \(2n-1\) 个结点

    • 原来有 \(n\) 个点,一共连了 \(n-1\) 条边,每条边新建一个结点,所以 \(n+n-1=2n-1\)
  • 原有点全在叶子节点上
    • 按照上述写法, f[fx]=f[fy]=f[n]=n; ,是从 \(fx,fy\) 向 \(n\) 连边,没有结点向结点连边
  • 该树是一颗二叉树
    • 显然
  • 该树是一个小顶堆
    • 先加入的是边权大的边,最后加入的是较小的边,较大的边所表示的结点的父亲节点是较小的边

那么这就导出了另一条神奇的性质: \(LCA(u,v)\) 为 \(u,v\) 结点路径上的最小边权结点。所以我们就可以依靠这条性质,使用倍增, \(Tarjan\) 或树链剖分等各种各样的算法求 \(LCA\) 来统计答案了。这就是 \(Kruskal\) 重构树。

顺便给一道板子题:BZOJ 3732: Network

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2e4+5;
const int MAXM=5e4+5;
int n,m,f[MAXN],a[MAXN],fa[MAXN],son[MAXN],sz[MAXN],dep[MAXN],st[MAXN];
int cnt,top[MAXN],to[MAXN<<1],nex[MAXN<<1];
struct Edge
{
int u,v,d;
bool operator < (const Edge& sjf) const {return d>sjf.d;}
}edge[MAXM];
inline int read()
{
int re=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
inline void add_edge(int x,int y)
{
to[++cnt]=y,nex[cnt]=top[x],top[x]=cnt;
to[++cnt]=x,nex[cnt]=top[y],top[y]=cnt;
}
inline int fd(int x)
{
int r=x;
while(f[r]!=r) r=f[r];
int i=x,j;
while(i!=r) j=f[i],f[i]=r,i=j;
return r;
}
void dfs1(int now)
{
for(int i=top[now];i;i=nex[i])
{
if(to[i]==fa[now]) continue;
fa[to[i]]=now,dep[to[i]]=dep[now]+1,sz[to[i]]=1;
dfs1(to[i]);
sz[now]+=sz[to[i]];
if(sz[to[i]]>sz[son[now]]) son[now]=to[i];
}
}
void dfs2(int now,int line_top)
{
st[now]=line_top;
if(!son[now]) return ;
dfs2(son[now],line_top);
for(int i=top[now];i;i=nex[i])
{
if(to[i]==son[now]||to[i]==fa[now]) continue;
dfs2(to[i],to[i]);
}
}
int main()
{
n=read(),m=read();
for(int i=0;i<m;i++) edge[i].u=read(),edge[i].v=read(),edge[i].d=read();
sort(edge,edge+m);
for(int i=1;i<=n;i++) f[i]=i;
for(int i=0;i<m;i++)
{
int fx=fd(edge[i].u),fy=fd(edge[i].v);
if(fx!=fy)
{
a[++n]=edge[i].d;
f[fx]=f[fy]=f[n]=n;
add_edge(fx,n),add_edge(fy,n);
}
}
for(int i=1;i<=n;i++)
if(f[i]==i)
{
fa[i]=n,sz[i]=dep[i]=1;
dfs1(i);
dfs2(i,i);
}
m=read();
while(m--)
{
int x=read(),y=read();
if(fd(x)!=fd(y)) puts("-1");
else
{
while(st[x]!=st[y])
{
if(dep[st[x]]<dep[st[y]]) swap(x,y);
x=fa[st[x]];
}
if(dep[x]>dep[y]) swap(x,y);
printf("%d\n",a[x]);
}
}
return 0;
}

Luogu P1967 货车运输(Kruskal重构树)的更多相关文章

  1. Luogu P1967 货车运输

    qwq 这题是知道了正解做法才写的.. 求每两点间最小权值最大的路径,本来我以为要每个点都跑一遍dij(?),后来意识到生成树好像是用来找这个的( ´▽`) 然后我问dtxdalao对不对,他说“我记 ...

  2. Luogu P1967 货车运输 倍增+最大生成树

    看见某大佬在做,决定补一发题解$qwq$ 首先跑出最大生成树(注意有可能不连通),然后我们要求的就是树上两点间路径上的最小边权. 我们用倍增的思路跑出来$w[u][j]$,表示$u$与的它$2^j$的 ...

  3. LUOGU P1967 货车运输(最大生成树+树剖+线段树)

    传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算 ...

  4. NOIP 2013 提高组 洛谷P1967 货车运输 (Kruskal重构树)

    题目: A 国有 nn 座城市,编号从 11 到 nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重. 现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情 ...

  5. 洛谷p1967货车运输(kruskal重构树)

    题面 题解中有很多说最优解是kruskal重构树 所以 抽了个早自习看了看这方面的内容 我看的博客 感觉真的挺好使的 首先对于kruskal算法来说 是基于贪心的思想把边权排序用并查集维护是否是在同一 ...

  6. kruskal - 倍增 - 并查集 - Luogu 1967 货车运输

    P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...

  7. [luogu P4197] Peaks 解题报告(在线:kruskal重构树+主席树 离线:主席树+线段树合并)

    题目链接: https://www.luogu.org/problemnew/show/P4197 题目: 在Bytemountains有N座山峰,每座山峰有他的高度$h_i$.有些山峰之间有双向道路 ...

  8. 【Luogu P5168】xtq玩魔塔(Kruskal 重构树 & 树状数组 & set)

    Description 给定一个 \(n\) 个顶点,\(m\) 条边的无向联通图,点.边带权. 先有 \(q\) 次修改或询问,每个指令形如 \(\text{opt}\ x\ y\): \(\tex ...

  9. Luogu P4768 [NOI2018]归程(Dijkstra+Kruskal重构树)

    P4768 [NOI2018]归程 题面 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点. \(m\) 条边的无向连通图(节点的编 ...

随机推荐

  1. IDA 远程调试设置

    第一步,先去 IDA   dbgsrv  这个目录下,找到要调试的那个远程计算机对应的可用客户端, 比如,android_server, 把它拷贝到目标计算机中, 比如 adb push .... 然 ...

  2. java_过滤器

    /** 过滤器: * File类中有两个和listFiles方法重载的方法,方法的参数就是过滤器 * listFiles(FileFilter filter) * java.io.FileFilter ...

  3. spring的mvc对于页面日期格式进行传值到后台

    对于spring的mvc 日期格式从页面传入后台是个问题.string类型和整形都能友好传入.但是对于日期类型date却不能传入.回报403参数不对的错误. 看例子: @RequestMapping( ...

  4. mybatis 查询sql时foreach使用法

    找到俩个例子摘下来 sql查询用户in传list参数 <select id="getEmpsByConditionForeach" resultType="com. ...

  5. Redis理解和使用

    摘抄并用于自查笔记 1. Redis简介 我们日常Java Web开发,一般使用数据库进行存储,在数据量较大的情况下,单一使用数据库保存数据的系统会因为面向磁盘,磁盘读写速度比较慢而存在严重的性能弊端 ...

  6. GridView编辑删除

    A前台代码 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="test.asp ...

  7. dataset datatable 转json

    class ToJosn { #region dataTable转换成Json格式 /// <summary> /// dataTable转换成Json格式 /// </summar ...

  8. Error:Execution failed for task ':app:validateSigningDebug'.

    今天出差回来 第一天   把项目重新移植到新的电脑上 一运行 给我报错了 ! 这个是签名的路径错误  我们需要重新导一下路径就可以了 点击左上角 File ->  project structu ...

  9. 查看python安装位置和已安装库的相关操作

    打开cmd.exe, *查看python安装位置 where python *查看已安装库 pip list 或者pip freeze *查看可以更新的第三方库 pip list --outdated ...

  10. 学习笔记css3

    边框 盒子圆角 border-radius:5px / 20%: border-radius:5px 4px 3px 2px; 左上,右上,右下,左下 盒子阴影 box-shadow:box-shad ...