快速切题 sgu104. Little shop of flowers DP 难度:0
104. Little shop of flowers
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
PROBLEM
You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.
Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
V A S E S |
||||||
1 |
2 |
3 |
4 |
5 |
||
Bunches |
1 (azaleas) |
7 |
23 |
-5 |
-24 |
16 |
2 (begonias) |
5 |
21 |
-4 |
10 |
23 |
|
3 (carnations) |
-21 |
5 |
-4 |
-20 |
20 |
According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.
To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.
ASSUMPTIONS
- 1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
- F ≤ V ≤ 100 where V is the number of vases.
- -50 £ Aij £ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.
Input
The first line contains two numbers: F, V.
- The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.
Output
- The first line will contain the sum of aesthetic values for your arrangement.
- The second line must present the arrangement as a list of F numbers, so that the k’th number on this line identifies the vase in which the bunch k is put
Sample Input
3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20
Sample Output
53
2 4 5 思路:dp[i][j]表示在i结尾处有花且长度为j的最大值,这道题还可以离线变o2
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=111;
const int inf=0x7ffffff;
int dp[maxn][maxn];
int pre[maxn][maxn];
int a[maxn][maxn];
int F,V;
int heap[maxn];
int main(){
scanf("%d%d",&F,&V);
for(int i=0;i<V;i++)fill(dp[i],dp[i]+V+1,-inf);
for(int i=0;i<F;i++){
for(int j=0;j<V;j++){
scanf("%d",a[i]+j);
}
}
for(int i=0;i<V;i++)dp[i][1]=a[0][i];
for(int i=2;i<=F;i++){
for(int j=i-1;j<V;j++){
for(int k=0;k<j;k++){
if(dp[k][i-1]+a[i-1][j]>dp[j][i]){//更新第i朵花是j的情况
dp[j][i]=dp[k][i-1]+a[i-1][j];
pre[j][i]=k;
}
}
}
}
int ans=-inf,ind;
for(int i=F-1;i<V;i++){
if(ans<dp[i][F]){
ind=i;
ans=dp[i][F];
}
}
for(int i=F;i>0;i--){
heap[i-1]=ind;
ind=pre[ind][i];
}
printf("%d\n",ans);
for(int i=0;i<F;i++){
printf("%d%c",heap[i]+1,i==F-1?'\n':' ');
}
return 0;
}
快速切题 sgu104. Little shop of flowers DP 难度:0的更多相关文章
- 快速切题 sgu105. Div 3 数学归纳 数位+整除 难度:0
105. Div 3 time limit per test: 0.25 sec. memory limit per test: 4096 KB There is sequence 1, 12, 12 ...
- POJ1157 LITTLE SHOP OF FLOWERS DP
题目 http://poj.org/problem?id=1157 题目大意 有f个花,k个瓶子,每一个花放每一个瓶子都有一个特定的美学值,问美学值最大是多少.注意,i号花不能出如今某大于i号花后面. ...
- Uva LA 3902 - Network 树形DP 难度: 0
题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
- ZOJ 3822 Domination 概率dp 难度:0
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- CF 148D Bag of mice 概率dp 难度:0
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- 143. Long Live the Queen 树形dp 难度:0
143. Long Live the Queen time limit per test: 0.25 sec. memory limit per test: 4096 KB The Queen of ...
- URAL 1203 Scientific Conference 简单dp 难度:0
http://acm.timus.ru/problem.aspx?space=1&num=1203 按照结束时间为主,开始时间为辅排序,那么对于任意结束时间t,在此之前结束的任务都已经被处理, ...
- HDU 4405 Aeroplane chess 概率DP 难度:0
http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...
- POJ 1837 Balance 水题, DP 难度:0
题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...
随机推荐
- 使用ShellExecute打开默认程序(邮件客户端)
转载:http://www.cnblogs.com/xubin0523/archive/2012/11/01/2749729.html ShellExecute ShellExecute的功能是运行一 ...
- linux下递归列出目录下的所有文件名(不包括目录)
1.linux下递归列出目录下的所有文件名(不包括目录) ls -lR |grep -v ^d|awk '{print $9}'2.linux下递归列出目录下的所有文件名(不包括目录),并且去掉空行 ...
- 【第八章】 springboot + mybatis + 多数据源
在实际开发中,我们一个项目可能会用到多个数据库,通常一个数据库对应一个数据源. 代码结构: 简要原理: 1)DatabaseType列出所有的数据源的key---key 2)DatabaseConte ...
- 第十四章 数字签名算法--RSA
注意:本节内容主要参考自 <Java加密与解密的艺术(第2版)>第9章“带密钥的消息摘要算法--数字签名算法” <大型分布式网站架构(设计与实践)>第3章“互联网安全架构” 1 ...
- 【译】第2节--- 什么是Code First?
原文链接:http://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx EF从EF4.1中引入了Code-Firs ...
- [POJ1958][Strange Tower of Hanoi]
题目描述 求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步 问题分析 考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i ...
- BZOJ 1006: [HNOI2008]神奇的国度(弦图染色)
http://www.lydsy.com/JudgeOnline/problem.php?id=1006 题意: 思路: 这个就是弦图染色问题,弦图啥的反正我也不懂,具体看论文https://wenk ...
- An error occurred during installation: No such plugin: cloudbees-folder
解决办法:下载cloudbees-folder.hpi放在目录/usr/local/tomcat/webapps/jenkins/WEB-INF/detached-plugins/下,重启tomcat ...
- MSVC_代码优化
测试环境: Win7x64 cn_visual_studio_2010_ultimate_x86_dvd_532347.iso qt-opensource-windows-x86-msvc2010_o ...
- 快速幂模n运算
模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...