Adventures in deep learning
转:https://github.com/GKalliatakis/Adventures-in-deep-learning
Adventures in deep learning
State-of-the-art Deep Learning publications, frameworks & resources
Overview
Deep convolutional neural networks have led to a series of breakthroughs in large-scale image and video recognition. This repository aims at presenting an elaborate list of the latest works on the field of Deep Learning since 2013.
This is going to be an evolving repository and I will keep updating it (at least twice monthly).
State-of-the-art papers (Descending order based on Google Scholar Citations)
- Very deep convolutional networks for large-scale image recognition (VGG-net) (2014) [pdf] [video]
- Going deeper with convolutions (GoogLeNet) by Google (2015) [pdf] [video]
- Deep learning (2015) [pdf]
- Visualizing and Understanding Convolutional Neural Networks (ZF Net) (2014) [pdf] [video]
- Fully convolutional networks for semantic segmentation (2015) [pdf]
- Deep residual learning for image recognition (ResNet) by Microsoft (2015) [pdf] [video]
- Deepface: closing the gap to human-level performance in face verification (2014) [pdf] [video]
- Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015) [pdf]
- Deep Learning in Neural Networks: An Overview (2015) [pdf]
- Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (PReLU) (2014) [pdf]
- Faster R-CNN: Towards real-time object detection with region proposal networks (2015) [pdf]
- Fast R-CNN (2015) [pdf]
- Spatial pyramid pooling in deep convolutional networks for visual recognition (SPP Net) (2014) [pdf] [video]
- Generative Adversarial Nets (2014) [pdf]
- Spatial Transformer Networks (2015) [pdf] [video]
- Understanding deep image representations by inverting them (2015) [pdf]
- Deep Learning of Representations: Looking Forward (2013) [pdf]
Classic publications
- ImageNet Classification with Deep Convolutional Neural Networks (AlexNet) (2012) [pdf]
- Rectified linear units improve restricted boltzmann machines (ReLU) (2010) [pdf]
Theory
- Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (2015) [pdf]
- Distilling the Knowledge in a Neural Network (2015) [pdf]
- Deep learning in neural networks: An overview (2015) [pdf]
Books
- Deep Learning Textbook - An MIT Press book (2016) [html]
- Learning Deep Architectures for AI [pdf]
- Neural Nets and Deep Learning [html] [github]
Courses / Tutorials (Webpages unless other is stated)
- Caffe Tutorial (CVPR 2015)
- Tutorial on Deep Learning for Vision (CVPR 2014)
- Introduction to Deep Learning with Python - Theano Tutorials [github]
- Deep Learning Tutorials with Theano/Python [github]
- Deep Learning: Take machine learning to the next level (by udacity)
- DeepLearnToolbox – A Matlab toolbox for Deep Learning [github]
- Stanford Matlab-based Deep Learning [github]
- Stanford 231n Class: Convolutional Neural Networks for Visual Recognition [github]
- Deep Learning Course (by Yann LeCun-2016)
- Generative Models (by OpenAI)
- An introduction to Generative Adversarial Networks (with code in TensorFlow)
Resources / Models (GitHub repositories unless other is stated)
- VGG-net
- GoogLeNet
- ResNet - MatConvNet implementation
- AlexNet
- Fully Convolutional Networks for Semantic Segmentation
- OverFeat
- SPP_net
- Fast R-CNN
- Faster R-CNN
- Generative Adversarial Networks (GANs)
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks)
- ResNeXt: Aggregated Residual Transformations for Deep Neural Networks)
- MultiPath Network training code
Frameworks & Libraries (Descending order based on GitHub stars)
- Tensorflow by Google [C++ and CUDA]: [homepage] [github]
- Caffe by Berkeley Vision and Learning Center (BVLC) [C++]: [homepage] [github] [Installation Instructions]
- Keras by François Chollet [Python]: [homepage] [github]
- Microsoft Cognitive Toolkit - CNTK [C++]: [homepage] [github]
- MXNet adapted by Amazon [C++]: [homepage] [github]
- Torch by Collobert, Kavukcuoglu & Clement Farabet, widely used by Facebook [Lua]: [homepage] [github]
- Convnetjs by Andrej Karpathy [JavaScript]: [homepage] [github]
- Theano by Université de Montréal [Python]: [homepage] [github]
- Deeplearning4j by startup Skymind [Java]: [homepage] [github]
- Paddle by Baidu [C++]: [homepage] [github]
- Deep Scalable Sparse Tensor Network Engine (DSSTNE) by Amazon [C++]: [github]
- Neon by Nervana Systems [Python & Sass]: [homepage] [github]
- Chainer [Python]: [homepage] [github]
- h2o [Java]: [homepage] [github]
- Brainstorm by Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [Python]: [github]
- Matconvnet by Andrea Vedaldi [Matlab]: [homepage] [github]
Adventures in deep learning的更多相关文章
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Deep Learning 26:读论文“Maxout Networks”——ICML 2013
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
随机推荐
- win10更新后无法远程,报 credssp加密oracle修正
答案都在图里,看不清就浏览器放大观看 打开开始菜单,搜索“编辑组策略” 进入
- Appium原理及版本变化细节
Appium原理小结 Api接口调用selenium的接口,Android底层用android的instrumentation(API2.3+ 通过绑定另外一个独立的selendroid项目来实现的) ...
- 比较MessageListActivity使用不同的layout
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- 【转】file_get_contents("php://input")的使用方法
$data = file_get_contents("php://input"); php://input 是个可以访问请求的原始数据的只读流. POST 请求的情况下,最好 ...
- 【mysql】关于InnoDB存储引擎 text blob 大字段的存储和优化
最近在数据库优化的时候,看到一些表在设计上使用了text或者blob的字段,单表的存储空间已经达到了近100G,这种情况再去改变和优化就非常难了 一.简介 为了清楚大字段对性能的影响,我们必须要知道i ...
- iOS如何在iTunes网站查看并下载APP的dsym文件
有时需要拿到app的dsym符号表文件,恰巧本地的构建版本文件已经不在了,那么我们还可以在iTunes那边获取到. 步骤不复杂: 1.登陆itunes网站 https://itunesconnect. ...
- leetcode44:wildcard
44. Wildcard Matching 问题描述 给定字符串s和模式p,判断字符串s是否完全符合模式p 其中字符串s只包含小写字母,模式串p包含小写字母.*.?,其中星号表示任意长度的任意字符串, ...
- Linux命令之lsb_release - 查看当前系统的发行版信息
用途说明 lsb_release命令用来查看当前系统的发行版信息(prints certain LSB (Linux Standard Base) and Distribution informati ...
- Ubuntu菜鸟入门(十二)—— 主题美化
一.unity-tweak-tool 1.软件介绍 调整 Unity 桌面环境,还是推荐使用Unity Tweak Tool,这是一个非常好用的 Unity 图形化管理工具,可以修改工作区数量.热区等 ...
- 【Android】Android如何对APK反编译
本文笔者粗略的介绍如何利用一些工具,对Android进行反编译,从而得到源码,希望对你有所帮助,笔者的android环境为4.4.2. 1.准备资源. 在开始之前,需要准备三项工具:apktool ...