参考论文:ImageNet Classification with Deep Convolutional Neural Networks

1.特点

1.1 ReLU Nonlinearity的提出

  • ReLU是非饱和非线性函数,f(x) = max(0, x),收敛速度比饱和激活函数快。

优缺点:

  • ReLU部分解决了sigmoid的饱和性,缺点是在小于0的地方会出现神经单元死亡,并且不能复活的情况。所以,有关于ReLU的改进方法的提出(leaky ReLU, parameterized ReLU, random ReLU)
  • 计算简单。
  • 收敛速度快。

1.2 多GPU训练

  1. 并行化的方法是将kernel matrix划分为两部分各自放在不同的GPU上。

  2. GPU之间的通信只发生在部分层。

  3. 5个卷积层,3个全连接层。

1.3 Local Response Normalization

  • ai是原激活值,bi是抑制后的激活值。
  1. 侧面抑制。也就是当前单元激活值,除以两边单元激活值。也就是说,如果一个单元激活值两边的值比它大一些的话,它自己将受到抑制,值会变小。

  2. 这也是一种正则化的方法。(brightness normalization)

1.4 Overlapping Pooling

  1. stride < kernei_size 那么就会出现重叠池化现象,有利于防止过拟合。

2.防止过拟合的方法

2.1 Data Augmentation

  1. 截取图的不同位置图,以及镜像变换。
  2. 利用PCA,add multiples of the found principal components.

2.2 Dropout

  1. 训练的时候让这一层部分神经单元输出为0,且不参与反向传播。
  2. 测试的时候让这一层利用上所有的神经单元,但是他们的输出值乘上0.5。
  3. 解释是,输出乘0.5用来近似指数级dropout网络的几何均值。

AlexNet网络结构特点总结的更多相关文章

  1. AlexNet 网络详解及Tensorflow实现源码

    版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...

  2. 第十六节,卷积神经网络之AlexNet网络实现(六)

    上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...

  3. 第十五节,卷积神经网络之AlexNet网络详解(五)

    原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...

  4. Caffe训练AlexNet网络,精度不高或者为0的问题结果

    当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...

  5. 如何使用 libtorch 实现 AlexNet 网络?

    如何使用 libtorch 实现 AlexNet 网络? 按照图片上流程写即可.输入的图片大小必须 227x227 3 通道彩色图片 // Define a new Module. struct Ne ...

  6. AlexNet网络

    AlexNet 中包含了比较新的技术点,首次在CNN中成功应用了 ReLu .Dropout和LRN等Trick. 1.成功使用了Relu作为CNN的激活函数,并验证其效果在较深的网络中超过了Sigm ...

  7. AlexNet网络的Pytorch实现

    1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...

  8. 深入理解AlexNet网络

    原文地址:https://blog.csdn.net/luoluonuoyasuolong/article/details/81750190 AlexNet论文:<ImageNet Classi ...

  9. pytorch实现AlexNet网络

    直接上图吧 写网络就像搭积木

随机推荐

  1. webpack学习三——output

    output的两个参数filename,path 一.path输出路径,输出路径要绝对路径,否则报错.做法如下: path:__dirname + 'path' 二.filename 输出文件命,相对 ...

  2. http如何301到https呢?

    HTTPS协议的站点信息更加安全,同时可降低网站被劫持的风险,Firefox和chrome浏览器对访问一些非https站点会提示风险,BD等搜索引擎也明确表态了对https站点的友好.那么我们如何部署 ...

  3. GOLANG错误处理最佳方案errors wrap, Defer, Panic, and Recover

    Simple error handling primitives:        https://github.com/pkg/errors Defer, Panic, and Recover:    ...

  4. The Die Is Cast(poj 1481简单的双dfs)

    http://poj.org/problem?id=1481 The Die Is Cast Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  5. [LeetCode] 88. Merge Sorted Array_Easy tag: Two Pointers

    Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array. Note: T ...

  6. AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) Chapter 3. Data Structures Fundamental Data Structures

    10410 这题说的是给了一棵多叉树的 bfs遍历轨迹 和dfs 遍历 轨迹 在父节点向叶子节点扩展的时候优先遍历编号较小的节点.我还原出这课树特殊判定 根据bfs的顺序来建立这课树,用一个队列安排要 ...

  7. [转]Mac Appium环境安装

    原文:https://blog.csdn.net/dongqiushan/article/details/53326518 1.安装JDK; 2.安装Android SDK; 3.安装brew; 4. ...

  8. Hive 常用优化参数

    常用调优测试语句 :    ①显示当前hive环境的参数值: set 参数名; 如:   hive> set mapred.map.tasks;mapred.map.tasks;   ②设置hi ...

  9. HTTP 协议入门

    本文转载自:http://www.ruanyifeng.com/blog/2016/08/http.html HTTP 协议是互联网的基础协议,也是网页开发的必备知识,最新版本 HTTP/2 更是让它 ...

  10. linux常用命令:split 命令

    split是linux下常用的分割文件命令.Linux下文件分割可以通过split命令来实现,而用cat进行文件合并.而分割可以指定按行数分割和按大小分割两种模式. 1.命令格式: split [OP ...