1..groupby()[].agg(by={})

2. collections.de...(lambda:1)

统计的单词是语料库中所有的词, 对Dataframe统计单词词频,同时增加一列数据count,这里我们使用reset_index,sort_values(by = ['counts], ascending=False)

这里使用的数据是经过分词后的语料库里所有的数据,该数据已经去除了停用词,

第一步:载入语料库的数据

第二步:进行分词

第三步:载入停用词,对停用词数据进行序列化tolist(),然后去除分词后语料库中的停用词

第四步: 使用grouby()[].agg 进行词频统计,使用reset_index().sort_values根据新增的counts列进行排序操作

# 1.导入数据语料的新闻数据
df_data = pd.read_table('data/val.txt', names=['category', 'theme', 'URL', 'content'], encoding='utf-8') # 2.对语料库进行分词操作
df_contents = df_data.content.values.tolist() # list of list 结构
Jie_content = []
for df_content in df_contents:
split_content = jieba.lcut(df_content)
if len(split_content) > 1 and split_content != '\t\n':
Jie_content.append(split_content) # 3. 导入停止词的语料库, sep='\t'表示分隔符, quoting控制引号的常量, names=列名, index_col=False,不用第一列做为行的列名, encoding
stopwords = pd.read_csv('stopwords.txt', sep='\t', quoting=3, names=['stopwords'], index_col=False, encoding='utf-8')
print(stopwords.head()) # 对文本进行停止词的去除
def drop_stops(Jie_content, stopwords):
clean_content = []
all_words = []
for j_content in Jie_content:
line_clean = []
for line in j_content:
if line in stopwords:
continue
line_clean.append(line)
all_words.append(line)
clean_content.append(line_clean) return clean_content, all_words
# 将DateFrame的stopwords数据转换为list形式
stopwords = stopwords.stopwords.values.tolist()
clean_content, all_words = drop_stops(Jie_content, stopwords)
print(clean_content[0]) # 4 .对所有词统计词频,做一个字典,然后进行排序, 这里也可以使用collections实现 df_dict = pd.DataFrame({'content':clean_content})
all_words_pd = pd.DataFrame({'all_word':all_words})
all_words_pd = all_words_pd.groupby(by=['all_word'])['all_word'].agg({'count':np.size})
all_words_pd = all_words_pd.reset_index().sort_values(by=['count'], ascending=False)
print(all_words_pd.head())

机器学习入门-贝叶斯统计语料库的词频.groupby() collections的更多相关文章

  1. 机器学习入门-文本数据-构造词频词袋模型 1.re.sub(进行字符串的替换) 2.nltk.corpus.stopwords.words(获得停用词表) 3.nltk.WordPunctTokenizer(对字符串进行分词操作) 4.np.vectorize(对函数进行向量化) 5. CountVectorizer(构建词频的词袋模型)

    函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0- ...

  2. python机器学习入门-(1)

    机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器 ...

  3. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

  4. Azure机器学习入门(三)创建Azure机器学习实验

    在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci ...

  5. 机器学习入门 - Google机器学习速成课程 - 笔记汇总

    机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...

  6. web安全之机器学习入门——3.1 KNN/k近邻

    目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...

  7. tensorfllow MNIST机器学习入门

    MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读 ...

  8. 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means

    时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...

  9. 机器学习入门:K-近邻算法

    机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题. ...

随机推荐

  1. MySQL的innoDB锁机制以及死锁处理

    MySQL的nnoDB锁机制 InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION):二是采用了行级锁.行级锁与表级锁本来就有许多不同之处,innodb正常的select ...

  2. Windows下搭建Subversion 服务器

    一.准备工作 1.获取 Subversion 服务器程序 到官方网站(http://subversion.tigris.org/)下载最新的服务器安装程序.目前最新的是1.5版本,具体下载地址在:ht ...

  3. setsockopt IP_ADD_MEMBERSHIP error!No such device的解决方案

    /mnt # ./onvifserver Happytime onvif server version 2.6Onvif server running at 192.168.1.10:8000crea ...

  4. MLCC Y5V 和 X7R 电容记录

    MLCC Y5V 和 X7R 电容记录 Y5V 的 MLCC 很少见的,但还是要注意. 自己记录一下,一个 100NF Y5V 电容 ,当温度到达 100度时,容值 为 36NF. 但是 X7R 电容 ...

  5. FastAdmin 提示框 toastr 改变文字

    如下图这个消息提示框为 toastr. FastAdmin 用的就是 toast 前端组件. 那如何改变这个文字呢? Karson:只要后台使用$this->success("自定义成 ...

  6. tomcat源码阅读之容器(Container)

    一. 实现容器的接口是Container接口,Tomcat中共有四种类型的容器: 1.Engine:表示整个Catalina Servlet引擎: 2.Host:表示含有一个或者多个Context容器 ...

  7. Linq to sql 增删改查(转帖)

    http://blog.csdn.net/pan_junbiao/article/details/7015633   (LINQ To SQL 语法及实例大全) 代码 Code highlightin ...

  8. SSD学习,keras

    https://github.com/pierluigiferrari/ssd_keras

  9. antd在线换肤定制功能

    最近react项目,用的antd框架,然后看见他的antdPro例子里面有个定制功能很帅,老大说做,那就做吧,鼓捣了一晚终于实现了. 先看预览效果吧 css换肤 入行前端的时候经常看鱼哥(张鑫旭)的博 ...

  10. 【Servlet和JSP-学习-1】基础知识

    Servlet Session管理 Cookie 获取指定名称的Cookie 删除指定名称的Cookie JSP EL表达式 示例: 后台存入request中的属性值: JSP界面 JSTL 来自为知 ...