P4180 【模板】严格次小生成树[BJWC2010]
倍增(LCA)+最小生成树
施工队挖断学校光缆导致断网1天(大雾)
考虑直接枚举不在最小生成树上的边。但是边权可能与最小生成树上的边相等,这样删边时权值不改变,就不满足条件了
所以我们可以先用倍增处理出最小生成树上任意2点之间的最大边权和次大边权
枚举每条不在最小生成树上的边,接到树上,再删去最大边(与枚举边的边权不等)或次大边(最大边与枚举边的边权相等),做个判断
判断边(u,v)时 我们只要询问(u,lca)和(v,lca)就可以了
找了半个多小时才发现数组不够大....
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
template <typename T> inline T max(T &a,T &b) {return a>b ?a:b;}
template <typename T> inline T min(T &a,T &b) {return a<b ?a:b;}
template <typename T> inline void read(T &x){
char c=getchar(); x=;
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=(x<<)+(x<<)+(c^),c=getchar();
}
struct edge{int from,to,dis;}a[];
int n,m,cnt,f[],hd[],nxt[],ed[],poi[],val[]; //邻接表存边
bool vis[];
inline bool cmp(const edge &A,const edge &B) {return A.dis<B.dis;}
inline int find(int x) {return f[x]==x ? x:f[x]=find(f[x]);}
inline void add(int x,int y,int v){
nxt[ed[x]]=++cnt; hd[x]=hd[x] ? hd[x]:cnt;
ed[x]=cnt; poi[cnt]=y; val[cnt]=v;
} struct LCA{
int d[],fa[][],fir[][],sec[][]; //fir:最大值 sec:次大值
inline void dfs(int x,int _fa){ //dfs预处理
d[x]=d[_fa]+; fa[x][]=_fa;
for(int i=;(<<i)<=d[x];++i){
fa[x][i]=fa[fa[x][i-]][i-];
fir[x][i]=max(fir[x][i-],fir[fa[x][i-]][i-]);
if(fir[x][i]!=fir[fa[x][i-]][i-]) sec[x][i]=max(sec[x][i],fir[fa[x][i-]][i-]); //次大值
else if(fir[x][i]!=fir[x][i-]) sec[x][i]=max(sec[x][i],fir[x][i-]);
}
for(int i=hd[x];i;i=nxt[i])
if(poi[i]!=_fa){
fir[poi[i]][]=val[i];
sec[poi[i]][]=-1e9-;
dfs(poi[i],x);
}
}
inline int lca(int x,int y){ //最近公共祖先
if(d[x]<d[y]) swap(x,y);
for(int i=;i>=;--i)
if(d[x]-(<<i)>=d[y])
x=fa[x][i];
if(x==y) return x;
for(int i=;i>=;--i)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][];
}
inline int query(int x,int y,int k){ //询问(x,y)之间的最大值
int res=-1e9-;
for(int i=;i>=;--i)
if(d[fa[x][i]]>=d[y]){
if(fir[x][i]!=k) res=max(res,fir[x][i]);
else res=max(res,sec[x][i]);
x=fa[x][i];
}
return res;
}
}mo1;
int main(){
read(n); read(m);
for(int i=;i<=n;++i) f[i]=i;
for(int i=;i<=m;++i) read(a[i].from),read(a[i].to),read(a[i].dis);
sort(a+,a+m+,cmp); int k=; long long tot=,ans=1e16;
for(int i=;i<=m&&k<n-;++i){
int r1=find(a[i].from),r2=find(a[i].to);
if(r1!=r2){
tot+=a[i].dis; f[r1]=r2; vis[i]=; ++k;
add(a[i].from,a[i].to,a[i].dis);
add(a[i].to,a[i].from,a[i].dis);
}
}mo1.dfs(,);
for(int i=;i<=m;++i){
if(vis[i]) continue; //在最小生成树上
int _lca=mo1.lca(a[i].from,a[i].to);
int q1=mo1.query(a[i].from,_lca,a[i].dis); //询问(u,lca)
int q2=mo1.query(a[i].to,_lca,a[i].dis); //询问(v,lca)
ans=min(ans,tot-max(q1,q2)+(long long)a[i].dis); //换边找最小值
}printf("%lld",ans);
return ;
}
P4180 【模板】严格次小生成树[BJWC2010]的更多相关文章
- Luogu P4180 【模板】严格次小生成树[BJWC2010]
P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得 ...
- 【洛谷】4180:【模板】严格次小生成树[BJWC2010]【链剖】【线段树维护最大、严格次大值】
P4180 [模板]严格次小生成树[BJWC2010] 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说, ...
- 「LuoguP4180」 【模板】严格次小生成树[BJWC2010](倍增 LCA Kruscal
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得 ...
- 【luogu P4180 严格次小生成树[BJWC2010]】 模板
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 ...
- 洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】
严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点 ...
- 【洛谷 P4180】【模板】严格次小生成树[BJWC2010](倍增)
题目链接 题意如题. 这题作为我们KS图论的T4,我直接打了个很暴力的暴力,骗了20分.. 当然,我们KS里的数据范围远不及这题. 这题我debug了整整一个晚上还没debug出来,第二天早上眼前一亮 ...
- P4180 严格次小生成树[BJWC2010] Kruskal,倍增
题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可 ...
- 【【模板】严格次小生成树[BJWC2010]】
树上的路径怎么能没有树剖 显然,次小生成树和最小生成树只在一条边上有差距,于是我们就可以枚举这一条边,将所有边加入最小生成树,之后再来从这些并不是那么小的生成树中找到那个最小的 我们往最小生成树里加入 ...
- 「BJWC2010」模板严格次小生成树
题目描述 小 \(C\) 最近学了很多最小生成树的算法,\(Prim\) 算法.\(Kruskal\) 算法.消圈算法等等.正当小\(C\)洋洋得意之时,小\(P\)又来泼小\(C\)冷水了.小\(P ...
随机推荐
- redis两种持久化方式的优缺点
redis两种持久化的方式 RDB持久化可以在指定的时间间隔内生成数据集的时间点快照 AOF持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集,AOF文件中全部以 ...
- Oracle管理监控之oracle客户端链接服务器配置文档
开始菜单--Oracle - OraClient10g_home1--配置和移植工具--Net Configuration Assistant 打开窗口如下: 选择 本地Net服务名配置 点 下一步 ...
- Java Native Interface 基于JNI的嵌入式手机软件开发实例
1.通过JNI和c/c++的库组件.其他代码交互 2.java和c不能互通的原因时数据类型问题 Introduction https://docs.oracle.com/javase/8/docs/t ...
- a loosely strongly typed language
JavaScript: The Definitive Guide, Sixth Edition by David Flanagan As explained above, the following ...
- linux中使用arcpy
切换到对应目录 即下图的 server安装路径 /home/arcgis/arcgis/server/tools 然后输入 ./python (这一步要注意 python这个命令 ...
- 滑雪---poj1088(动态规划+记忆化搜索)
题目链接:http://poj.org/problem?id=1088 有两种方法 一是按数值大小进行排序,然后按从小到大进行dp即可: #include <iostream> #incl ...
- less语言特性(二) —— 混合
在 LESS 中我们可以定义一些通用的属性集为一个 class,然后在另一个 class 中去调用这些属性,下面有这样一个 class: 1 2 3 4 .bordered { border-top: ...
- python3爬虫-爬取新浪新闻首页所有新闻标题
准备工作:安装requests和BeautifulSoup4.打开cmd,输入如下命令 pip install requests pip install BeautifulSoup4 打开我们要爬取的 ...
- 将你的wordpress博客添加到百度个性首页
当你登陆百度账号后,进入百度首页会显示新的个性首页,不仅仅有搜索框,下面还有一个小型导航,放着你经常去的网站. 百度提供了一键添加到百度首页的按钮代码. 首先,先打开分享到百度新首页代码申请页面:ht ...
- word使用
1:插入图片,显示不完整,需要>点击上方的段落,选择单倍行距 2:wps 可以直接右键选择保存文件中的图片 3:word中换行符的标识符为^p ,可以用来替换换行符. 4:使word中某一段背 ...