HDU 3480 - Division - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
Input
The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
Sample Output
Case 1: 1
Case 2: 18
题意:
给出含有N元素的集合S,选取M个S的子集,要求满足S1 U S2 U … U SM = S;
定义一个集合的最大元素为MAX,最小元素为MIN,它的花费为(MAX - MIN)2,现要求所有子集的总花费最少为多少。
题解:
先将S内元素从小到大排列,然后将这N个元素的序列分成M组(因为若有重叠元素,必然会使得花费增加);
那么假设dp[i][j]为前i个数分成j组的最小花费,那么求出dp[N][M]即可回答问题;
状态转移方程为dp[i][j] = min{ dp[k][j-1] + (S[i] - S[k+1])2 },j-1≤k<i;
那么当j固定时,计算dp[i][j]时需要枚举k,若k可能取值到a,b两点,且j-1≤a<b<i,
若有 dp[b][j-1] + (S[i] - S[b+1])2 ≤ dp[a][j-1] + (S[i] - S[a+1])2,则b点优于a点;
将上式变形,得到:
b点优于a点 <=> 
再然后就是斜率优化的老套路了(斜率优化的详情查看斜率DP分类里之前的文章),就不再赘述。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=+; int n,m,S[maxn];
int dp[maxn][maxn];
int q[maxn],head,tail; int up(int a,int b,int j) //g(a,b)的分子部分
{
return (dp[b][j-]+S[b+]*S[b+])-(dp[a][j-]+S[a+]*S[a+]);
}
int down(int a,int b) //g(a,b)的分母部分
{
return *S[b+]-*S[a+];
} int main()
{
int t;
scanf("%d",&t);
for(int kase=;kase<=t;kase++)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&S[i]);
sort(S+,S+n+); for(int i=;i<=n;i++) dp[i][]=(S[i]-S[])*(S[i]-S[]);
for(int j=;j<=m;j++)
{
head=tail=;
q[tail++]=j-;
for(int i=j;i<=n;i++)
{
while(head+<tail)
{
int a=q[head], b=q[head+];
if(up(a,b,j)<=S[i]*down(a,b)) head++; //g(a,b)<=S[i]
else break;
}
int k=q[head];
dp[i][j]=dp[k][j-]+(S[i]-S[k+])*(S[i]-S[k+]); while(head+<tail)
{
int a=q[tail-], b=q[tail-];
if(up(a,b,j)*down(b,i)>=up(b,i,j)*down(a,b)) tail--; //g(a,b)>=g(b,i)
else break;
}
q[tail++]=i;
}
} printf("Case %d: %d\n",kase,dp[n][m]);
}
}
注意DP边界的初始化。
HDU 3480 - Division - [斜率DP]的更多相关文章
- hdu 3480 Division(斜率优化DP)
题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...
- HDU 2829 - Lawrence - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...
- ACM-ICPC 2016 沈阳赛区现场赛 I. The Elder && HDU 5956(斜率DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5956 题意:一颗树上每条边有个权值,每个节点都有新闻要送到根节点就是1节点,运送过程中如果不换青蛙就是 ...
- HDU 3480 Division(斜率DP裸题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 题目大意:将n个数字分成m段,每段价值为(该段最大值-该段最小值)^2,求最小的总价值. 解题思 ...
- HDU 3480 Division(斜率优化+二维DP)
Division Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others) Tota ...
- HDU 3480 Division DP斜率优化
解题思路 第一步显然是将原数组排序嘛--然后分成一些不相交的子集,这样显然最小.重点是怎么分. 首先,我们写出一个最暴力的\(DP\): 我们令$F[ i ][ j ] $ 为到第\(i\)位,分成\ ...
- HDU 3480 division
题目大意:一个有n个数的集合,现在要求将他分成m+1个子集,对子集i设si表示该集合中最大数与最小数的差的平方.求所有si的和的最小值.n<=10000,m<=5000. 分析:最优解的m ...
- hdu 3480 Division(四边形不等式优化)
Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...
- hdu 2829 Lawrence(斜率优化DP)
题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...
随机推荐
- OpenCV学习笔记:opencv_highgui模块
一,简介 本模块为跨平台的gui/IO组件,支持平台包括windows,linux,mac,IOS,android,可支持图像/视频/摄像头的读取显示以及转码. 二,分析 本模块为跨平台的gui/IO ...
- Laravel查询构造器简介
数据表 CREATE TABLE IF NOT EXISTS students( `id` INT AUTO_INCREMENT PRIMARY KEY, `name` VARCHAR(255) NO ...
- 用XYNTService把Python程序变为服务
1. XYNTService的使用 1.1. 介绍 1.2. XYNTService 2. 用XYNTService把Python程序变为服务 1. XYNTService的使用 1.1. 介绍 通常 ...
- vuejs监听苹果iphone手机键盘事件
在iphone手机中,vue提供的keyup事件是不能监听iphone键盘的,但是h5提供的input事件可以做到. 只需要向下面这样处理,就可以解决iphone不响应键盘事件的bug <tem ...
- java中类相关注意事项
下面default类就是默认修饰符的类 1.Java中调用类中属性或方法(不管是否静态属性或方法)都要在类的方法中调用,虽然这个太基础,但今天想在类中调用静态类的静态变量,不能调用: 2.Java调用 ...
- Create maintenance backup plan in SQL Server 2008 R2 using the wizard
You will need to identify how you want your maintenance plan to be setup. In this example the mainte ...
- Redis 操作字符串数据
Redis 操作字符串数据: > set name "Tom" // set 用于添加 key/value 数据,如果 key 存在则覆盖 OK > setnx nam ...
- Windows虚拟地址转物理地址(原理+源码实现,附简单小工具)
...
- Objective-c官方文档 怎么使用对象
版权声明:原创作品,谢绝转载!否则将追究法律责任. 对象发送和接受消息 尽管有不同的方法来发送消息在对象之间,到目前位置是想中括号那样[obj doSomeThing]:左边是接受消息的接收器,右 ...
- 《征服C指针》读书笔记
本文同时发布在我的个人博客上,欢迎访问~ www.seekingdream.cn 在读完K&R之后,对C的认识就是指针.数组.网上的人们对指针也有些“敬而远之”的感觉.最近从同学处淘得< ...