原文地址:sklearn.svm.SVC 参数说明

==============================

资源:

sklearn官网+DOC

库下载GitHub

==============================

经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需。

svm分为SVC和SVR,前者用来做分类Classification后者用来做回归Regression

本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS: libsvm中的二次规划问题的解决算法是SMO)。
sklearn.svm.SVC(C=1.0kernel='rbf'degree=3gamma='auto'coef0=0.0shrinking=Trueprobability=False,

tol=0.001cache_size=200class_weight=Noneverbose=Falsemax_iter=-1decision_function_shape=None,random_state=None)

参数:

l  C:C-SVC的惩罚参数C?默认值是1.0

(理论取值范围0~无穷大,0对应于忽视离群点,无穷大对应于“硬间隔”,C依靠经验和试验选取)

C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。

l  kernel :核函数,默认是rbf,可以是‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’

  0 – 线性:u'v

   1 – 多项式:(gamma*u'*v + coef0)^degree

  2 – RBF函数:exp(-gamma|u-v|^2)

  3 –sigmoid:tanh(gamma*u'*v + coef0)

l  degree :多项式poly函数的维度,默认是3,选择其他核函数时会被忽略。

l  gamma : ‘rbf’,‘poly’ 和‘sigmoid’的核函数参数。默认是’auto’,则会选择1/n_features

l  coef0 :核函数的常数项。对于‘poly’和 ‘sigmoid’有用。

l  probability :是否采用概率估计?.默认为False

l  shrinking :是否采用shrinking heuristic方法,默认为true

l  tol :停止训练的误差值大小,默认为1e-3

l  cache_size :核函数cache缓存大小,默认为200

l  class_weight :类别的权重,字典形式传递。设置第几类的参数C为weight*C(C-SVC中的C)

l  verbose :允许冗余输出?

l  max_iter :最大迭代次数。-1为无限制。

l  decision_function_shape :‘ovo’, ‘ovr’ or None, default=None3

l  random_state :数据洗牌时的种子值,int值

主要调节的参数有:C、kernel、degree、gamma、coef0。

sklearn.svm.SVC 参数说明的更多相关文章

  1. sklearn.svm.SVC参数说明

    摘自:https://blog.csdn.net/szlcw1/article/details/52336824 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: l ...

  2. sklearn系列之 sklearn.svm.SVC详解

    首先我们应该对SVM的参数有一个详细的认知: sklearn.svm.SVC 参数说明: 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问 ...

  3. sklearn集成支持向量机svm.SVC参数说明

    经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需. 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问题的解 ...

  4. SVM的sklearn.svm.SVC实现与类参数

    SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...

  5. sklearn svm基本使用

    SVM基本使用 SVM在解决分类问题具有良好的效果,出名的软件包有libsvm(支持多种核函数),liblinear.此外python机器学习库scikit-learn也有svm相关算法,sklear ...

  6. sklearn之SVC

    sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability= ...

  7. sklearn学习1----sklearn.SVM.SVC

    1.SVM有两种作用:分类和回归,分类是用SVC,回归用SVR. 2.SVC:(中文官网) 重点在svm.SVC(),fit(X,Y),以及SVC中的参数. 3.SVC参数: ①C,C是控制软间隔中的 ...

  8. 机器学习之sklearn——SVM

    sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...

  9. sklearn.svm.LinearSVC文档学习

    https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC 1 ...

随机推荐

  1. CentOS安装setup

    如果在命令行运行 setup 提示乜有安装该命令,那么就需要先安装一下setup命令 执行:yum install setuptool #可以发现执行setup后不全,再安装一个用于系统服务管理yum ...

  2. vs2010将写好的软件打包安装包经验

    (1) 用VS2010打开已经编写好准备做安装包的软件程序,右击解决方案,添加新建项目. (2) 在“新建项目”对话框中,选择“其他项目类型”,再选择“安装和部署”,然后在模板中选择“安装项目” (3 ...

  3. 多重条件判断SQL:用于用户名称,密码,权限的检测和判断

    string sqlstr = "select count(*) from tb_admin where 用户名='"+UserName+"'and 密码='" ...

  4. runtime error (运行时错误)

    比如说: ①除以零 ②数组越界:int a[3]; a[10000000]=10; ③指针越界:int * p; p=(int *)malloc(5 * sizeof(int)); *(p+10000 ...

  5. Excel 设置下拉列表

    1. 把列表的候选值写到一块区域, 可以说同Sheet也可以是另一个Sheet中. 2. 选中要设置的列, 选择 Data > Data Validation 3. 在Data Validati ...

  6. I.MX6 计算iomux Pin配置

    /********************************************************************************* * I.MX6 计算iomux P ...

  7. Codeforces123E. Maze【树形dp】【概率dp】【证明题】

    LINK 题目大意 一棵树,上面的每个点都有一定概率成为起点和终点 从起点出发,随机游走,并按照下列规则统计count: DFS(x) if x == exit vertex then finish ...

  8. 【BZOJ2558】Count on a tree

    又是因为傻逼错误浪费了半天时间 原题: 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个 ...

  9. Kettle入门教程

    最近做的项目用到了ETL工具Kettle,这个工具相当好用,可以将各种类型数据作为数据流,经过处理后再生成各种类型的数据.正如其名“水壶”,将各个地方的水倒进水壶里,再用水壶倒入不同的容器.不过一来初 ...

  10. MySQLi基于面向对象的编程

    http://blog.csdn.net/koastal/article/details/50650500