SMO算法(转)
链接:https://www.zhihu.com/question/40546280/answer/88539689
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
SMO(Sequential Minimal Optimization)是针对求解SVM问题的Lagrange对偶问题,一个二次规划式,开发的高效算法。传统的二次规划算法的计算开销正比于训练集的规模,而SMO基于问题本身的特性(KKT条件约束)对这个特殊的二次规划问题的求解过程进行优化。对偶问题中我们最后求解的变量只有Lagrange乘子向量,这个算法的基本思想就是每次都只选取一对,固定向量其他维度的元素的值,然后进行优化,直至收敛。
SMO干了什么?
首先,整个对偶问题的二次规划表达如下:
SMO在整个二次规划的过程中也没干别的,总共干了两件事:
- 选取一对参数
- 固定向量的其他参数,将代入上述表达式进行求最优解获得更新后的
SMO不断执行这两个步骤直至收敛。
因为有约束存在,实际上和的关系也可以确定。这两个参数的和或者差是一个常数。
<img src="https://pic1.zhimg.com/071f3351b3eee2db40fea3ba944f9d7c_b.png" data-rawwidth="633" data-rawheight="274" class="origin_image zh-lightbox-thumb" width="633" data-original="https://pic1.zhimg.com/071f3351b3eee2db40fea3ba944f9d7c_r.png">所以虽然宣传上说是选择了一对
所以虽然宣传上说是选择了一对,但还是选择了其中一个,将另一个写作关于它的表达式代入目标函数求解。
为什么SMO跑的那么快,比提出之前的算法不知道高到哪里去了?
正如上面提到的,在固定其他参数以后,这就是一个单变量二次规划问题,仅有的约束也是这个变量,显然有闭式解。不必再调用数值优化算法。
KKT条件是对偶问题最优解的必要条件:
除了第一个非负约束以外,其他约束都是根据目标函数推导得到的最优解必须满足的条件,如果违背了这些条件,那得到的解必然不是最优的,目标函数的值会减小。
所以在SMO迭代的两个步骤中,只要中有一个违背了KKT条件,这一轮迭代完成后,目标函数的值必然会增大。Generally speaking,KKT条件违背的程度越大,迭代后的优化效果越明显,增幅越大。
怎样跑的更快?
和梯度下降类似,我们要找到使之优化程度最大的方向(变量)进行优化。所以SMO先选取违背KKT条件程度最大的变量,那么第二个变量应该选择使目标函数值增大最快的变量,但是这个变量怎么找呢?比较各变量优化后对应的目标函数值的变化幅度?这个样子是不行的,复杂度太高了。
SMO使用了一个启发式的方法,当确定了第一个变量后,选择使两个变量对应样本之间最大的变量作为第二个变量。直观来说,更新两个差别很大的变量,比起相似的变量,会带给目标函数更大的变化。间隔的定义也可以借用偏差函数
我们要找的也就是使对于来说使最大的
很惭愧,只做了一点微小的工作。
References
[1] Platt, John. "Sequential minimal optimization: A fast algorithm for training support vector machines." (1998).
SMO算法(转)的更多相关文章
- 机器学习——支持向量机(SVM)之Platt SMO算法
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓 ...
- 支持向量机原理(四)SMO算法原理
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...
- SVM-非线性支持向量机及SMO算法
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...
- 改进的SMO算法
S. S. Keerthi等人在Improvements to Platt's SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO ...
- [笔记]关于支持向量机(SVM)中 SMO算法的学习(一)理论总结
1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日 ...
- 关于SVM数学细节逻辑的个人理解(三) :SMO算法理解
第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t. 这个优化问题的. 虽然这个优化问题只剩下了α这一个变 ...
- 支持向量机(Support Vector Machine)-----SVM之SMO算法(转)
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的 ...
- 支持向量机(五)SMO算法
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规 ...
- 机器学习之支持向量机(二):SMO算法
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 支持向量机-SMO算法简化版
SMO:序列最小优化 SMO算法:将大优化问题分解为多个小优化问题来求解 SMO算法的目标是求出一系列的alpha和b,一旦求出这些alpha,就很容易计算出权重向量w,并得到分隔超平面 工作原理:每 ...
随机推荐
- IIS6与IIS7在编程实现HTTPS绑定时的细微差别
本文章其实最主要信息是: 问题出在那个小小的*号上——IIS6中不支持通配符,第一部分为空时表示(All Unsigned),而IIS7中同时支持空或通配符的写法,如果为空则自动转为*:443:,我们 ...
- java-appium-527手机浏览器、PC端程序、grid模式
1.手机浏览器 2.window通用成语自动化 3.appium支持grid模式
- python 正则表达式的处理
1.基本用法 #!/usr/bin/env python # coding=utf-8 import re # example 1 text ="fjsk test\t fjskd bar\ ...
- win10的坑之wifi找不到
安装了win10一周以来,win10的坑太多太多,微软搞什么pc/mobile二合一,真是脑残行为. 首先是usb设备无缘无故找不到,据说是和杀毒软件/防火墙有关,后来是关掉了windows defe ...
- javascript继承之原型式继承(四)
javascript之父道格拉斯在2006年给出了这样一串代码,来实现继承. function object(o) { function F() { } F.prototype = o; return ...
- 【BZOJ】1085 [SCOI2005]骑士精神(IDA*)
题目 传送门:QWQ 分析 我好菜啊. 一波IDA*水过去了. 代码 #include <bits/stdc++.h> using namespace std; ; char s[maxn ...
- java在注解中绑定方法参数的解决方案
我们有这样子的需求,需要记录用户操作某个方法的信息并记录到日志里面,例如,用户在保存和更新任务的时候,我们需要记录下用户的ip,具体是保存还是更新,调用的是哪个方法,保存和更新的任务名称以及操作是否成 ...
- linux操作系统3 vi编辑器
知识内容: 1.Linux基础命令复习 2.vi模式和基本操作 3.vi常用快捷键 一.Linux基础命令复习 目录(文件夹)操作 cd 进入目录 (tab自动补全) pwd 查看当前目录 mkdir ...
- Notepad++配置c++编译环境
博主学生狗一只,之前一直进行.net开发,用惯了微软的那一套.C#上手容易,开发起来简单,但是正如前辈们所说的,它隐藏了太多底层的东西,惯坏了我,导致快毕业了有些东西一无所知.同时自己想写点简单的算法 ...
- django返回状态码的页面,指定p地址访问
只有DEBUG = False 才能展示自定义的错误页面,否则djnago会报错,给出提示信息. ps:django DEBUG=FALSE, 会导致不能加载静态文件 ALLOWED_HOSTS ...