H2O中的随机森林算法介绍及其项目实战(python实现)

包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator

H2ORandomForestEstimator 的常用方法和参数介绍:

(一)建模方法:

model =H2ORandomForestEstimator(ntrees=n,max_depth =m)

model.train(x=random_pv.names,y='Catrgory',training_frame=trainData)

通过trainData来构建随机森林模型,model.train中的trainData训练集预测变量名称预测 响应变量的名称

(二)预测方法:

pre_tag=H2ORandomForestEstimator.predict(model ,test_data) 利用训练好的模型来对测试集进行预测,其中的model训练好的模型test_data:测试集

(三)算法参数说明:

(1)ntrees:构建模型时要生成的树的棵树。

(2)max_depth :每棵树的最大深度。

项目要求:

题目一: 利用train.csv中的数据,通过H2O框架中的随机森林算法构建分类模型,然后利用模型对 test.csv中的数据进行预测,并计算分类的准确度进而评价模型的分类效果;通过调节参 数,观察分类准确度的变化情况。 注:准确度=预测正确的数占样本数的比例

题目二: 通过H2o Flow 的随机森林算法,用同题目一中所用同样的训练数据和参数,构建模型; 参看模型中特征的重要性程度,从中选取前8个特征,再去训练模型,并重新预测结果, 进而计算分类的准确度。

需求完成内容:2个题目的代码,认为最好的准确度的输出值和test数据与预测结果合并 后的数据集,命名为predict.csv

python实现代码如下:

(1) 题目一:

#手动进行调节参数得到最好的准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[2:] model=H2ORandomForestEstimator(ntrees=6,max_depth =16)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
df2=h2o.import_file('test.csv')
test_data=df2[2:]
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
Precision=dfnew.nrow/predict.nrow print(Precision)
h2o.download_csv(predict,'predict.csv')

运行结果最好为87.0833%-6-16,如下

#for循环进行调节参数得到最好的准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[2:]
df2=h2o.import_file('test.csv')
test_data=df2[2:]
Precision=0
nt=0
md=0
for i in range(1,50):
for j in range(1,50):
model=H2ORandomForestEstimator(ntrees=i,max_depth =j)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
p=dfnew.nrow/predict.nrow
if Precision<p:
Precision=p
nt=i
md=j print(Precision)
print(i)
print(j)
h2o.download_csv(predict,'predict.csv')

 运行结果最好为87.5%-49-49,如下

(2)题目二:建模如下,之后挑出排名前8的特征进行再次建模

#手动调节参数得到最大准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
df2=h2o.import_file('test.csv')
test_data=df2[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']] model=H2ORandomForestEstimator(ntrees=5,max_depth =18)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData) pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
Precision=dfnew.nrow/predict.nrow print(Precision)
h2o.download_csv(predict,'predict.csv')

  运行结果最好为87.5%-5-18,如下

#for循环调节参数得到最大正确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
df2=h2o.import_file('test.csv')
test_data=df2[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
Precision=0
nt=0
md=0
for i in range(1,50):
for j in range(1,50):
model=H2ORandomForestEstimator(ntrees=i,max_depth =j)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
p=dfnew.nrow/predict.nrow
if Precision<p:
Precision=p
nt=i
md=j print(Precision)
print(i)
print(j)
h2o.download_csv(predict,'predict.csv')

 运行结果最好为87.5%-49-49,如下 

H2O中的随机森林算法介绍及其项目实战(python实现)的更多相关文章

  1. 随机森林入门攻略(内含R、Python代码)

    随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...

  2. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

  3. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  4. 用Python实现随机森林算法,深度学习

    用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩 ...

  5. spark 随机森林算法案例实战

    随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数 ...

  6. RandomForest 随机森林算法与模型参数的调优

    公号:码农充电站pro 主页:https://codeshellme.github.io 本篇文章来介绍随机森林(RandomForest)算法. 1,集成算法之 bagging 算法 在前边的文章& ...

  7. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  8. R语言︱机器学习模型评估方案(以随机森林算法为例)

    笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...

  9. 随机森林算法-Deep Dive

    0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstra ...

随机推荐

  1. UnicodeDecodeError: 'utf-8' codec can't decode byte

    for line in open('u.item'): #read each line whenever I run this code it gives the following error: U ...

  2. 订单状态 Mark

    ) { ) { ) { ) { ) { ) { ) { ) { ) { ) { ) { ) { ) { ) { ))) { ))) { ))) { ))) { )); } else { Assert. ...

  3. python标准库介绍——32 Queue 模块详解

    Queue 模块 ``Queue`` 模块提供了一个线程安全的队列 (queue) 实现, 如 [Example 3-2 #eg-3-2] 所示. 你可以通过它在多个线程里安全访问同个对象. ==== ...

  4. 奶瓶(beini)破解无线密码流程:安装、抓包、从虚拟机(VMware)拷贝握手包(拷贝到硬盘、U盘)、跑包

    1. 环境 1). Windows 7 64位版本 2). VMware 9.0.2版本 3). 奶瓶1.2.3版本(beini-1.2.3.iso) 2. 安装 2.1 安装方式一 将beini-1 ...

  5. Android4.1(Jelly Bean)API新特性尝鲜

    原文:http://android.eoe.cn/topic/android_sdk Android 4.1 APIs (API Level: 16)http://developer.android. ...

  6. 使用gradle多渠道打包

    以友盟的多渠道打包为例,如果我们须要打包出例如以下渠道:UMENG, WANDOUJIA, YINGYONGBAO. 第一种方法.是须要创建文件的. 我们在写完我们的代码之后,在app/src以下.分 ...

  7. mysql把主键定义为自动增长标识符类型

    分享下mysql中如何把主键定义为自动增长标识符类型. 1.把主键定义为自动增长标识符类型在mysql中,如果把表的主键设为auto_increment类型,数据库就会自动为主键赋值.例如: )); ...

  8. Atitit mysql存储过程编写指南

    Atitit mysql存储过程编写指南 1.1. 设定参数与返回值  `obj_id` int ,,返回类型 varchar(200)1 1.2. 在语句中使用传入的obj_id参数1 1.3. 测 ...

  9. git报错之index.lock

    当想回退到某个版本的时候,用git reset --hard commit_id,发现报错,原因是.git目录下多了个index.lock文件,可以通过rm命令删除,然后再回退 rm -f ./.gi ...

  10. localtime 和 localtime_r

    #include <cstdlib> #include <iostream> #include <time.h> #include <stdio.h> ...