题目描述:

计算机学院的男生和女生共n个人要坐成一排玩游戏,因为计算机的女生都非常害羞,男生又很主动,所以活动的组织者要求在任何时候,一个女生的左边或者右边至少有一个女生,即每个女生均不会只与男生相邻。现在活动的组织者想知道,共有多少种可选的座位方案。

例如当n为4时,共有
女女女女, 女女女男, 男女女女, 女女男男, 男女女男, 男男女女, 男男男男
7种。

思路

1. 读完题, 感觉这是道 DP 题

2. 前几天做了一道统计括号数的题目, 和此题比较类似

3. dp[i][j] 表示前 i 个人中有 j 个女生的方案数, 那么状态转移方程就能写为

dp[i][j] = dp[i-1][j] (最后一位放男生) + dp[i-2][j-2] (最后一位放女生, 那么倒数第二位必须是女生)

4. 初始化 dp[i][0] = 1, dp[i][1] = 0. 但要考虑例外, dp[4][3] = dp[3][3] + dp[2][1], 这种情况下 dp[2][1] 应该取 1

5. 从 1 写到 5, 这个思路都 work, 不过仍是 WA 到死

update 2014年3月10日12:42:13

上面的状态转移方程是错误的.

在 (4) 中, 谈到了例外, 然而这个例外并不是唯一的. 当 n = 6 时, 求解 dp[6][5] = dp[5][5] + dp[4][3]

其中 dp[5][5] = 1, 而 dp[4][3] 是 2, 分别为 FFFM, MFFF.

但是, 少算了一个, FFMF, 因为已经确定了最后两位是 FF

dp[i][j] 表示在第 i 个位置放置男生(j = 0) 或女生(i = 0) 的方案数

那么 dp[i][0] = dp[i-1][0] + dp[i-1][1]

难点是求解 dp[i][1], dp[i][1] = dp[k][0] k = [0, i-2] 意思是第 i 个位置放女士, 那么第 i-1 个位置上也肯定是女生, 那么我们就枚举最后一个男生出现的位置

dp[k][0] 表示第 k 个位置上是男生的方案数, 同时也表示第 k 个位置上是男生且 k+1 -> i 位置上都是女生的方案数

可以用单调队列记录前 i-2 个位置上放男生的方案数, 这样, 时间复杂度下降到了 o(n)

代码 

#include <iostream>
#include <memory.h>
#include <stdio.h>
using namespace std; const int NO_DEFINE = 0x80808080;
int solution[][]; int n; void init() {
memset(solution, 0x80, sizeof(solution));
solution[][] = ;
solution[][] = ;
solution[][] = ;
solution[][] = ;
solution[][] = ;
solution[][] = ;
} int getSolution(int a, int b) {
if(solution[a][b] != NO_DEFINE)
return solution[a][b]; if(b == )
return (solution[a][b] = (getSolution(a-, )+ getSolution(a-, ))% );
else if(b == ) {
return (solution[a][b] = getSolution(a-, ))% ;
}
else {
return (solution[a][b] = (getSolution(a-, b)+getSolution(a-, ))% );
} }
int main() {
init();
while(scanf("%d", &n) != EOF) {
int res = ;
for(int i = ; i <= ; i ++) {
res = res + getSolution(n, i);
res = (res >= ) ? res % :res;
}
printf("%d\n", res);
}
return ;
}

九度 1552 座位问题(递推DP)的更多相关文章

  1. 九度 1547 出入栈(递推DP)

    题目描述: 给定一个初始为空的栈,和n个操作组成的操作序列,每个操作只可能是出栈或者入栈.要求在操作序列的执行过程中不会出现非法的操作,即不会在空栈时执行出栈操作,同时保证当操作序列完成后,栈恰好为一 ...

  2. 九度OJ 1081:递推数列 (递归,二分法)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...

  3. Code Force 429B Working out【递推dp】

    Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the ...

  4. 递推DP URAL 1167 Bicolored Horses

    题目传送门 题意:k个马棚,n条马,黑马1, 白马0,每个马棚unhappy指数:黑马数*白马数,问最小的unhappy值是多少分析:dp[i][j] 表示第i个马棚放j只马的最小unhappy值,状 ...

  5. 递推DP URAL 1017 Staircases

    题目传送门 /* 题意:给n块砖头,问能组成多少个楼梯,楼梯至少两层,且每层至少一块砖头,层与层之间数目不能相等! 递推DP:dp[i][j] 表示总共i块砖头,最后一列的砖头数是j块的方案数 状态转 ...

  6. 递推DP URAL 1260 Nudnik Photographer

    题目传送门 /* 递推DP: dp[i] 表示放i的方案数,最后累加前n-2的数字的方案数 */ #include <cstdio> #include <algorithm> ...

  7. 递推DP URAL 1353 Milliard Vasya's Function

    题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...

  8. 递推DP URAL 1119 Metro

    题目传送门 /* 题意:已知起点(1,1),终点(n,m):从一个点水平或垂直走到相邻的点距离+1,还有k个抄近道的对角线+sqrt (2.0): 递推DP:仿照JayYe,处理的很巧妙,学习:) 好 ...

  9. 递推DP 赛码 1005 Game

    题目传送门 /* 递推DP:官方题解 令Fi,j代表剩下i个人时,若BrotherK的位置是1,那么位置为j的人是否可能获胜 转移的时候可以枚举当前轮指定的数是什么,那么就可以计算出当前位置j的人在剩 ...

随机推荐

  1. sql 表连接基本的语法

    SQL连接能够分为内连接.外连接.交叉连接. 1.内连接:内连接查询操作列出与连接条件匹配的数据行,它使用比較运算符比較被连接列的列值. 1.1 select * from Table1 as a, ...

  2. Redis有序集合

    Redis有序集合类似Redis集合存储在设定值唯一性.不同的是,一个有序集合的每个成员带有分数,用于以便采取有序set命令,从最小的到最大的分数有关. Redis 有序set添加,删除和测试中的O( ...

  3. jQuery(四):HTML代码操作

    html()可以对HTML代码进行操作,类似于元素JavaScript中的innerHTML. 例如: 示例: <!DOCTYPE html> <html lang="en ...

  4. mysql导入sql脚本

    例如:我的用户名是root 密码是123 sql脚本存在C盘 名字为test.sql 数据库为test 有两种方法可以执行脚本 1:打开CMD输入以下命令(不需要转换目录)>mysql -u r ...

  5. poj 1723 中位数

    最近在看一些中位数的东西,然后顺便也看了些题目.poj 1723不仅要求到水平位置的最短距离和,还要求水平都相邻的排成一排的最短距离和,即士兵都站成一列. 到y轴的距离好办,按y轴坐标排序,求中位数, ...

  6. 初试PyOpenGL一 (Python+OpenGL)

    很早就一直想学Python,看到一些书都有介绍,不管是做为游戏的脚本语言,还是做为开发项目的主要语言都有提及(最主要的CUDA都开始支持Python,CUDA后面一定要学),做为先熟悉一下Python ...

  7. (笔记)电路设计(十一)之DC/DC电源转换方案设计应用

    十大 法则之一:搞懂什么是DC/DC电源以及DC/DC转换电路分类 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换.一般我们把输入电源电压在72V以内的电压变换过程称为 ...

  8. JsonCpp 判断 value 中是否有某个KEY

    JsonCpp如何判断是否有某个KEY,使用json[“key”]和isXXX的函数即可. 如果json中没有key键,则会创建一个空成员或者返回一个空成员. bool isNull() const; ...

  9. MySql 存储过程总结

    MySql 存储过程 -- ---------------------------- -- Procedure structure for `proc_adder` -- -------------- ...

  10. Win10尝鲜体验——初识传说中不一样的Windows 分类: 资源分享 2015-07-24 18:27 13人阅读 评论(0) 收藏

    这几天,网上传来一个消息,虽然不知是好是坏,Win10可以下载安装了! 出于好奇,下载尝鲜,几个截图,留作纪念~ 中文,还是要好好支持的,毕竟中国有如此多的用户 可选的安装版本 许可条款也刚刚出炉,估 ...