LINK


思路

首先因为式子后面把方案数乘上了

所以其实只用输出所有方案的攻击力总和

然后很显然可以用强化牌就尽量用

因为每次强化至少把下面的牌翻一倍,肯定是更优的

然后就只有两种情况

  • 强化牌数量少于k
  • 强化牌数量大于等于k

根据乘法原理,设\(f_{i,j}\)是选i张强化牌用j张的倍数总和,\(g_{i,j}\)是选i张攻击用j张的倍数总和

\(ans+=f_{k,k}*g_{m-i,m-k}\)

\(ans+=f_{i,k-1}*g_{m-i,1}\)

然后f的计算可以量化大小这个东西,就是先排序

dp出选了i个数,最后一个在j的方案数,这样前面的j各种不可能选出其他数,对于后面的数直接组合数计算就可以了


#include<bits/stdc++.h>

using namespace std;

const int Mod = 998244353;

const int N = 3e3 + 10;

int n, m, k, a[N], b[N], c[N][N];
int sum[N], f[N][N], g[N][N]; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} void init() {
for (int i = 0; i < N; i++) c[i][0] = 1;
for (int i = 1; i < N; i++) {
for (int j = 1; j <= i; j++) {
c[i][j] = add(c[i - 1][j], c[i - 1][j - 1]);
}
}
} int calcf(int a, int b) { // 取a张用b张
if (a < b) return 0;
if (!b) return c[n][a]; //**
int res = 0;
for (int i = 1; i <= n; i++)
res = add(res, mul(f[b][i], c[n - i][a - b]));
return res;
} int calcg(int a, int b) {
if (a < b) return 0;
if (!b) return 0; //**
int res = 0;
for (int i = 1; i <= n; i++)
res = add(res, mul(g[b][i], c[n - i][a - b]));
return res;
} void solve() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) scanf("%d", &b[i]);
sort(a + 1, a + n + 1, [&](const int a, const int b) {return a > b;});
sort(b + 1, b + n + 1, [&](const int a, const int b) {return a > b;});
for (int i = 1; i <= n; i++) {
f[1][i] = a[i];
sum[i] = add(sum[i - 1], a[i]);
}
for (int i = 2; i <= n; i++) {
for (int j = i; j <= n; j++)
f[i][j] = mul(sum[j - 1], a[j]);
for (int j = 1; j <= n; j++)
sum[j] = add(sum[j - 1], f[i][j]);
}
for (int i = 1; i <= n; i++) {
g[1][i] = b[i];
sum[i] = add(sum[i - 1], b[i]);
}
for (int i = 2; i <= n; i++) {
for (int j = i; j <= n; j++) {
g[i][j] = add(mul(b[j], c[j - 1][i - 1]), sum[j - 1]);
}
for (int j = 1; j <= n; j++)
sum[j] = add(sum[j - 1], g[i][j]);
}
int ans = 0;
for (int i = max(0, m - n); i <= min(n, m); i++) {
if (i < k) ans = add(ans, mul(calcf(i, i), calcg(m - i, k - i)));
else ans = add(ans, mul(calcf(i, k - 1), calcg(m - i, 1)));
}
printf("%d\n", ans);
} int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
init();
int T; scanf("%d", &T);
while (T--) solve();
return 0;
}

LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】的更多相关文章

  1. loj2538 「PKUWC2018」Slay the Spire 【dp】

    题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i ...

  2. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  3. 【LOJ】#2538. 「PKUWC2018」Slay the Spire

    题解 由于强化卡都是大于1的,我们分析一下就会发现,尽可能多的用强化卡,至少用一张攻击卡,一定是每组卡牌的最优选择 所以我们把攻击卡和强化卡从大到小排序 我们设\(g[i][j]\)表示前i张卡牌里选 ...

  4. 「PKUWC2018」Slay the Spire

    题目链接 题意分析 这个题其实不是期望 就是一共有\(C_{2n}^m\)种情况 每一种情况选择\(k\)张牌 然后求最大攻击值的总和 我们考虑 当前抽出了选出了\(i\)张强化牌 \(m-i\)张攻 ...

  5. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  6. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  7. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  8. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  9. loj#2537. 「PKUWC2018」Minimax

    题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...

随机推荐

  1. Python requests快速上手

    Python requests快速上手 这里参考官方文档,在ide中写了一遍,加深一下印象,定义的函数只是为了方便区分不同的请求方式 #-*-coding:utf-8-*- # Time:2017/1 ...

  2. export与export default exports与module.exports的用法

    转载:http://blog.csdn.net/zhou_xiao_cheng/article/details/52759632 本文原创地址链接:http://blog.csdn.net/zhou_ ...

  3. threejs和particles.js

    particles.js 在线配置的东西: http://vincentgarreau.com/particles.js/ https://threejs.org/ http://thehuub.co ...

  4. windows 网络共享传送文件超慢

    这可是无线局域网,竟然只有 200K/s. 调查经过: 1) 问题是单向的, B->A 没有问题, A->B就出事 2) 只发生在 Windows网络共享, A上装了apache测试, A ...

  5. 基于netty框架的socket长连接负载均衡解决方案

    socket通讯的单机瓶颈 物联网的项目socket使用方式有两种: 短连接的socket请求 维持socket长连接的请求 对于socket短链接来说就好比是http请求,请求服务器,服务器返回数据 ...

  6. English trip -- VC(情景课)3 B Bamily members

    xu言: 今天,好困啊 -__-. . zZ 早点睡吧...适当的休息,才能更好的学习 Vocabulary focus  husband wife uncle aunt brother sister ...

  7. Spring Boot 系统要求

    Spring Boot 2.1.0.RELEASE 方需要 Java 8 or 9 的支持和 Spring Framework 5.1.2.RELEASE 以上的版本. 明确的构建工具的支持,请参考下 ...

  8. Strip CodeForces - 487B (单调队列)

    题面: Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right. Now Ale ...

  9. 网络编程基础——System.Net.Socket 命名空间及相关类的使用

    System.Net.Socket 命名空间主要提供制作 Socket 网络应用程序的相关类.(Socket 类.TcpClient 类.TcpListener 类 和 UdpClient 类) 1. ...

  10. map和unordered_map

    1.boost::unordered_map, 它与 stl::map的区别就是,stl::map是按照operator<比较判断元素是否相同,以及比较元素的大小,然后选择合适的位置插入到树中. ...