结点容量..拆点然后随便写

---------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
#define chk(x, y) (x >= 0 && x < R && y >= 0 && y < C)
 
const int maxn = 10000;
const int maxm = 2900;
 
int h[maxn], cnt[maxn];
int X[maxm][maxm], Y[maxm][maxm];
int R, C, D, V, S, T, N;
char s[maxm];
 
struct edge {
int to, cap;
edge *next, *rev;
} E[1000000], *pt = E, *head[maxn], *p[maxn], *cur[maxn];
 
inline void Add(int u, int v, int w) {
pt->to = v; pt->cap = w; pt->next = head[u]; head[u] = pt++;
}
 
inline void AddEdge(int u, int v, int w) {
Add(u, v, w); Add(v, u, 0);
head[u]->rev = head[v];
head[v]->rev = head[u];
}
 
void Init() {
V = N = 0;
scanf("%d%d%d", &R, &C, &D);
memset(X, -1, sizeof X);
for(int i = 0; i < R; i++) {
scanf("%s", s);
for(int j = 0; j < C; j++) if(s[j] > '0') {
X[i][j] = V++;
Y[i][j] = V++;
AddEdge(X[i][j], Y[i][j], s[j] - '0');
}
}
S = V++; T = V++;
for(int i = 0; i < R; i++)
for(int j = 0; j < C; j++) if(~X[i][j])
for(int d = 1; d <= D; d++)
for(int k = 0; k <= d; k++) {
int x = i + k, y = j + d - k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
x = i - k, y = j - d + k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
x = i + k, y = j - d + k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
x = i - k, y = j + d - k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
}
for(int i = 0; i < R; i++) {
scanf("%s", s);
for(int j = 0; j < C; j++) {
if(~X[i][j] && (i < D || j < D || i + D >= R || j + D >= C)) AddEdge(Y[i][j], T, maxn);
if(s[j] != '.') AddEdge(S, X[i][j], 1), N++;
}
}
}
 
void Solve() {
memset(cnt, 0, sizeof cnt);
memset(h, 0, sizeof h);
cnt[0] = V;
for(int i = 0; i < V; i++) cur[i] = head[i];
int Flow = 0; edge* e;
for(int x = S, A = maxn; h[S] < V; ) {
for(e = cur[x]; e; e = e->next)
if(h[e->to] + 1 == h[x] && e->cap) break;
if(e) {
p[e->to] = cur[x] = e;
A = min(A, e->cap);
if((x = e->to) == T) {
for(; x != S; x = p[x]->rev->to) {
p[x]->cap -= A;
p[x]->rev->cap += A;
}
Flow += A;
A = maxn;
}
} else {
if(!--cnt[h[x]]) break;
h[x] = V;
for(e = head[x]; e; e = e->next) if(h[e->to] + 1 < h[x] && e->cap) {
h[x] = h[e->to] + 1;
cur[x] = e;
}
cnt[h[x]]++;
if(x != S) x = p[x]->rev->to;
}
}
printf("%d\n", N - Flow);
}
 
int main() {
Init();
Solve();
return 0;
}

---------------------------------------------------------------

1066: [SCOI2007]蜥蜴

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 2516  Solved: 1240
[Submit][Status][Discuss]

Description

在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外。 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上。石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。任何时刻不能有两只蜥蜴在同一个石柱上。

Input

输入第一行为三个整数r,c,d,即地图的规模与最大跳跃距离。以下r行为石竹的初始状态,0表示没有石柱,1~3表示石柱的初始高度。以下r行为蜥蜴位置,“L”表示蜥蜴,“.”表示没有蜥蜴。

Output

输出仅一行,包含一个整数,即无法逃离的蜥蜴总数的最小值。

Sample Input

5 8 2
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........

Sample Output

1

HINT

100%的数据满足:1<=r, c<=20, 1<=d<=4

Source

BZOJ 1066: [SCOI2007]蜥蜴( 最大流 )的更多相关文章

  1. poj 2711 Leapin' Lizards && BZOJ 1066: [SCOI2007]蜥蜴 最大流

    题目链接:http://poj.org/problem?id=2711 题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1066 Your p ...

  2. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  3. [BZOJ 1066] [SCOI2007] 蜥蜴 【最大流】

    题目链接:BZOJ - 1066 题目分析 题目限制了高度为 x 的石柱最多可以有 x 只蜥蜴从上面跳起,那么就可以用网络流中的边的容量来限制.我们把每个石柱看作一个点,每个点拆成 i1, i2,从 ...

  4. BZOJ 1066 [SCOI2007]蜥蜴(最大流)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1066 [题目大意] 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些 ...

  5. bzoj 1066: [SCOI2007] 蜥蜴

    这道题还是挺好想的,但我一开始还是想错了…… 把每个石柱拆成两个点,一个入度,一个出度,两个点连一条容量为高度的边,这样就可以限制从此石柱上经过的蜥蜴的数量.关于蜥蜴是否单独成点,我是单独当成了一个点 ...

  6. bzoj 1066 : [SCOI2007]蜥蜴 网络流

    题目链接 给一个n*m的图, 里面每一个点代表一个石柱, 石柱有一个高度. 初始时有些石柱上面有蜥蜴, 蜥蜴可以跳到距离他曼哈顿距离小于等于d的任意一个石柱上,跳完后, 他原来所在的石柱高度会减一, ...

  7. 1066: [SCOI2007]蜥蜴

    1066: [SCOI2007]蜥蜴 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3545  Solved: 1771[Submit][Status] ...

  8. [SCOI2007] 蜥蜴 (最大流)

    [SCOI2007] 蜥蜴 题目背景 07四川省选 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1 ...

  9. P2472 [SCOI2007]蜥蜴 (最大流)

    题目 P2472 [SCOI2007]蜥蜴 解析 这个题思路比较清晰,本(qi)来(shi)以(jiu)为(shi)无脑建图跑最大流,结果挂了,整了一个小时后重新建图才过的. 建立一个超级源点和一个超 ...

随机推荐

  1. Flash,一次Bug的思考

    我绝对不算是F黑,大部分时候,我还是很挺Flash平台的,Flash提供了很好的跨平台特性以及Flash Player11后的GPU加速.Stage3D等等,对于开发者来说,绝对让人欣喜若狂(对我是这 ...

  2. jquery Ztree v3.5 实例2 自定义显示在节点前的图片

    显示效果如下: 代码如下: <html> <head><title></title></head> <script type=&quo ...

  3. Codeforces 475C Kamal-ol-molk&#39;s Painting 模拟

    主题链接:点击打开链接 意甲冠军:特定n*m矩阵 X代表色 .代表无色 随着x*y形刷子去涂色. 刷子每次能够→或↓移动随意步. 若可以染出给定的矩阵,则输出最小的刷子的面积 若不能输出-1 思路: ...

  4. swift 用协议实现代理传值功能

    1.功能简介 RootViewController中用个lable和一个按钮,点击按钮跳转到模态窗口.在模态窗口中有个TextField和一个按钮,输入文字点击关闭模态按钮后跳转到RootViewCo ...

  5. perl 递归地遍历目录下的文件

    #!/usr/bin/perl -w use strict; use File::Spec; local $\ ="\n";#当前模块的每行输出加入换行符 my %options; ...

  6. OpenCV学习(1) OpenCV的安装

    前沿 准备了好几天,终于开始了,不管怎样,接下来的这个月一定把这本书很好的啃下来.当然OpenCV可以在很多的IDE下安装与配置,我这里就只在VS2010和VC6.0下安装配置了,当然这篇博文主要讲在 ...

  7. CentOS 7 +Nginx

    一:安装前的准备工作  安装 pcre-devel环境 #yum -y install pcre-devel 安装 openssl  环境   #yum -y install openssl open ...

  8. 21. 无法执行该操作,因为链接服务器”Server_202”的 OLE DB 访问接口 “SQLNCLI10″ 无法启动分布式事务”

    无法执行该操作,因为链接服务器”Server_202”的 OLE DB 访问接口 “SQLNCLI10″ 无法启动分布式事务” 原因:调用存储过程的方式有问题,必须用JDBC方式调用存储过程才可以正常 ...

  9. Allegro的优点与缺点

    记得刚毕业出来时就在某台商工作,用的就是allegro,从此上了贼船就下不来了--.其实还用过pcad,protel,powerpcb(以下简称3p,加上pads就4p了,呵呵--).至于mentor ...

  10. 一个基于MINA框架应用的最简单例子

    直接上代码.关于原理和主要的API以后在说.先能跑通了在说. 主要的包:mina-core-2.0.0.jar[到官网上下载完整项目包里面还有文档和依赖包],jcl-over-slf4j-1.5.11 ...